/*****************************************************************************/ /* */ /* COUNT PAIRS OF CONSECUTIVE ROOTS OF THE CONGRUENCE X**((P-1)/N)=Y(MOD P) */ /* 06/01/07 (dkc) */ /* */ /* This C program tests propositions for n=3. */ /* */ /*****************************************************************************/ #include <stdio.h> #include <math.h> #include "input.h" unsigned int croots(unsigned int *input, unsigned int index, unsigned int n, unsigned int *output); void res64_32(unsigned int exp0, unsigned int exp1, unsigned int q0, unsigned int q1, unsigned int *output, unsigned int base); unsigned int r[100000]; int main () { unsigned int n=3; // n value unsigned int h,i,sum,p,p1,pn,temp,flag0,flag1,flag2; unsigned int s[14]; unsigned int U[2]; FILE *Outfp; Outfp = fopen("out3.dat","w"); for (h=0; h<insize; h++) { p=input[2*h]; // load p if (p>40000) // reduce execution time break; i=croots(input, h, n, s); // count consecutive roots of congruences if (i==0) // continue if n does not divide p-1 continue; if (i==2) { printf(" error: bad primitive root \n"); break; } printf(" p=%d ",input[2*h]); /***************************************************/ /* check if the sum of S[i] is equal to (p-1)/n-1 */ /***************************************************/ sum=0; for (i=0; i<n; i++) { sum=sum+s[i]; printf(" %d ",s[i]); } printf("\n"); p1=p-1; pn=p1/n; if (sum!=pn-1) { printf(" error: incorrect sum \n"); break; } /***********************************/ /* check if s[1]-s[2]=s[2]-s[3] */ /***********************************/ flag0=0; if ((s[0]-s[1])==(s[1]-s[2])) flag0=1; if ((s[1]-s[0])==(s[0]-s[2])) flag0=1; /****************************/ /* check if r is a square */ /****************************/ flag1=0; temp=(unsigned int)(sqrt((double)pn)+0.01); if (temp*temp==pn) flag1=1; /************************************/ /* check if s[3]-s[2]+2=s[1]-s[3] */ /************************************/ flag2=0; if ((2*s[2]+2)==(s[0]+s[1])) flag2=1; /*****************************************************/ /* check if r is a square when s[1]-s[2]=s[2]-s[3] */ /*****************************************************/ if (flag0==1) { fprintf(Outfp," p=%d ",p); for (i=0; i<n; i++) fprintf(Outfp," %d ",s[i]); fprintf(Outfp,"\n"); if (flag1==0) { fprintf(Outfp,"p=%d, error: (p-1)/n is not a square \n",p); printf(" error: (p-1)/n is not a square \n"); } } /*******************************************************/ /* check if r is a square when s[3]-s[2]+2=s[1]-s[3] */ /*******************************************************/ if (flag2==1) { if (flag1==0) { fprintf(Outfp,"p=%d, error: (p-1)/n is not a square \n",p); printf(" error: (p-1)/n is not a square \n"); } } /***********************************************************************/ /* check if s[1]-s[2]=s[2]-s[3] when r is a square and 2**r<>1(mod p) */ /***********************************************************************/ if (flag1==1) { res64_32(0, pn, 0, p, U, 2); if ((U[0]!=0)||(U[1]!=1)) { if (flag0==0) { fprintf(Outfp,"p=%d, error: differences not equal \n",p); printf(" error: differences not equal \n"); } } /*************************************************************************/ /* check if s[3]-s[2]+2=s[1]-s[3] when r is a square and 2**r==1(mod p) */ /*************************************************************************/ else { if (flag2==0) { fprintf(Outfp,"p=%d, error: differences not equal \n",p); printf(" error: differences not equal \n"); } } } /****************************************/ /* check if r/2 is odd when s[1]=s[3] */ /****************************************/ if ((s[0]==s[2])||(s[1]==s[2])) { if ((pn/4)*4==pn) { fprintf(Outfp,"p=%d, error: r/2 is even \n",p); printf(" error: r/2 is even \n"); } } /*************************/ /* check if s[1]=s[2] */ /*************************/ if (s[0]==s[1]) { fprintf(Outfp,"p=%d, error: s[1] equals s[2] \n",p); printf(" error: s[1] equals s[2] \n"); } } fclose(Outfp); return(0); }