﻿ proposition 8
```/*****************************************************************************/
/*									     */
/*  FACTOR (a**p-b**p)/(a-b) (when [(a**p+b**p)/(a+b)] is a pth power)	     */
/*  02/25/14 (dkc)							     */
/*									     */
/*  Program determines if a, b, a-b, a+b, pa, pb, p(a-b), p(a+b), p**2*a,    */
/*  p**2*b, p**2*(a-b), p**2*(a+b), 2, p, 2p, or p/2 are pth powers modulo   */
/*  the prime factors of [(a**p-b**p)/(a-b)].  Use "table4a" for a<=2000000. */
/*  Use "table6a" for 2000000<a<=2500000.  Use "table7a" for a<2500000<=     */
/*  3000000.  Modify "insize" accordingly.                                   */
/*									     */
/*  The output is "a, b, (code<<16)|number of prime factors, code0||code1,   */
/*  code2||code3, code4||code5, code6, "and" of code0,code1,...,code6".      */
/*  "code" values are 0, 1, 2, or 3 if p divides a, b, a-b, or a+b           */
/*  respectively.  code0, code1,...,code6 are codes for the different prime  */
/*  factors of [(a**p-b**p)/(a-b)].  A corresponding bit is set in the code  */
/*  if p/2, 2*p, 2, p, a, b, a-b, a+b, pa, pb, p(a-b), p(a+b), p**2*a,	     */
/*  p**2*b, p**2*(a-b), or p**2*(a+b) is a pth power modulo a prime factor   */
/*  of [(a**p-b**p)/(a-b)].						     */
/*									     */
/*  If 2*p does not divide a, b, a-b, or a+b, and 2 is a pth power modulo    */
/*  a prime factor of [(a**p-b**p)/(a-b)] not of the form p**2*k+1, then     */
/*  an error is indicated ("error[2]" is set to 8).  (Set "split" to 1.)     */
/*  This is part of Proposition (4).					     */
/*									     */
/*  If 2*p divides a or b, [(a**p-b**p)/(a-b)] has two distinct prime	     */
/*  factors, neither of these distinct prime factors is of the form	     */
/*  p**2*k+1, and [(a**p-b**p)/(a-b)] is not of the form p**2*k+1, then      */
/*  an error is indicated ("error[2]" is set to 8).  This is part of         */
/*  Proposition (15).  The rest of Proposition (15) can be verified by	     */
/*  examining the codes generated when "numfac" equals 2, "split" equals 0,  */
/*  "psflag" equals 0, and "code" equals 0 or 1.                             */
/*									     */
/*  Proposition (8) can be verified by examining the codes generated when    */
/*  "psflag" equals 1.  (The codes should also be examined when "mixed"      */
/*  forms of prime factors of [(a**p-b**p)/(a-b)] are allowed.)  (Set	     */
/*  "split" to 2.)                                                           */
/*									     */
/*  Proposition (9) can be verified by examining the codes generated when    */
/*  "psflag" equals 0.  (The codes should also be examined when "mixed"      */
/*  forms of prime factors of [(a**p-b**p)/(a-b)] are allowed.)  (Set	     */
/*  "split" to 1.)                                                           */
/*									     */
/*  Proposition (3) can be verified by examining the "and" of the codes      */
/*  when "split" equals 1 and "code" equals 2 or 3.  The bits corresponding  */
/*  to 2 and p should be examined.					     */
/*									     */
/*****************************************************************************/
#include <math.h>
#include <stdio.h>
#include "table7a.h"
void dummy(unsigned int a, unsigned int b, unsigned int c, unsigned int d);
void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p);
void quotient(unsigned int *a, unsigned int *b, unsigned int);
void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d,
unsigned int *e, unsigned int f);
void bigbigs(unsigned int *a, unsigned int *b);
void bigbigd(unsigned int *a, unsigned int *b);
void bigbigq(unsigned int a0, unsigned int a1, unsigned int a2,
unsigned int a3, unsigned int *quotient, unsigned int d2,
unsigned int d3);
unsigned int lmbd(unsigned int mode, unsigned int a);
void differ(unsigned int *a, unsigned int *b);

int main ()
{
unsigned int p=3; // input prime
unsigned int numfac=3; // number of distinct prime factors of (a**p-b**p)/(a-b)
unsigned int split=2;  // if set to 0, don't allow 2 and p to "split"
// if set to 1, only allow "split" 2 and p
// otherwise, allow both
unsigned int psflag=2; // if set to 1, factors must be of the form p**2*k+1
// if set to 0, factors must not be of the form p**2*k+1
// otherwise, factors can be of mixed types
unsigned int offset=0;	   // offset into the input look-up table (must be
// even and less than "insize").  Used to reduce
// execution time.

extern unsigned int input[];
extern unsigned short table[];
extern unsigned int tmptab[];
extern unsigned int output[];
extern unsigned int error[];
extern unsigned int count;
unsigned int insize=1038;  // table7a
//unsigned int insize=1068;   // table6a
//unsigned int insize=6818;   // table4a
unsigned int tsize=1228;
unsigned int maxsiz=200000;
unsigned int tmpsiz;
unsigned int outsiz=11000*7;
unsigned int save[20];  // solutions array
unsigned int savsiz=19;  // size of solutions array minus one
unsigned int d,e,c;
unsigned int h,i,j,k,l,m,iters;
unsigned int flag,temp,sumdif,ps,limit;
unsigned int R[2],S[2],T[2],U[2],V[2],W[2],X[3],Y[4],Z[4],Up[2];
int yflag,zflag;
unsigned int pflag,qflag,rflag,sflag,tflag,uflag,vflag,wflag,xflag,wrap;
unsigned int n=0;
FILE *Outfp;
Outfp = fopen("out8.dat","w");
if (numfac>7) {
printf("number of factors too large (not enough memory allocated) \n");
goto zskip;
}
/*********************************/
/*  extend prime look-up table	 */
/*********************************/
tmpsiz=0;
for (i=0; i<tsize; i++) {
j = (int)(table[i]);
if (((j-1)/p)*p==(j-1)) {
tmptab[tmpsiz] = j;
tmpsiz=tmpsiz+1;
}
}
for (d=10001; d<10000000; d++) {
if (((d-1)/p)*p!=(d-1))
continue;
if(d==(d/2)*2) continue;
if(d==(d/3)*3) continue;
if(d==(d/5)*5) continue;
if(d==(d/7)*7) continue;
if(d==(d/11)*11) continue;
if(d==(d/13)*13) continue;
if(d==(d/17)*17) continue;
if(d==(d/19)*19) continue;
/************************************************/
/*  look for prime factors using look-up table	*/
/************************************************/
l = (int)(2.0 + sqrt((double)d));
k=0;
if (l>table[tsize-1]) {
error[0]=1;
goto bskip;
}
else {
for (i=0; i<tsize; i++) {
if (table[i] < l) k=i;
else break;
}
}
flag=1;
l=k;
for (i=0; i<=l; i++) {
k = table[i];
if ((d/k)*k == d) {
flag=0;
break;
}
}
if (flag==1) {
tmptab[tmpsiz]=d;
tmpsiz = tmpsiz + 1;
if (tmpsiz>=maxsiz)
break;
}
}
printf("size=%d, prime=%d \n",tmpsiz,tmptab[tmpsiz-1]);
tmpsav=tmpsiz;
limit=(tmptab[tmpsiz-1])>>16;
limit=limit*limit;
/***********************************/
/*  factor (d**p + e**p)/(d + e)   */
/***********************************/
error[0]=0;	// clear error array
error[1]=0;
error[2]=0;
ps=p*p;
zflag=0;
count=0;
wrap=0;
for (h=offset; h<insize; h++) {
if (wrap>8) {
printf("count=%d \n",h+1);
wrap=0;
}
else
wrap=wrap+1;
zloop:
if (zflag<2) {
d=input[3*h];
e=input[3*h+1];
c=input[3*h+2];
sumdif=0;
}
else {
d=input[3*(h-1)+1];
e=input[3*h+1];
c=input[3*h+2];
sumdif=1;
}
//
// check for "split" 2 and p
//
qflag=2;
if ((d/2)*2==d) {
if (sumdif==0) {
if (((d+e)/p)*p==(d+e))
qflag=0;
}
else {
if (((d-e)/p)*p==(d-e))
qflag=0;
}
}
if ((e/2)*2==e) {
if (sumdif==0) {
if (((d+e)/p)*p==(d+e))
qflag=1;
}
else {
if (((d-e)/p)*p==(d-e))
qflag=1;
}
}
if ((split==0)&&(qflag!=2))
if ((split==1)&&(qflag==2))
//
// check if p divides a, b, a-b, or a+b
//
if ((d/p)*p==d)
yflag=0;
if ((e/p)*p==e)
yflag=1;
if (((d+e)/p)*p==(d+e)) {
if (sumdif==0)
yflag=3;
else
yflag=2;
}
if (((d-e)/p)*p==(d-e)) {
if (sumdif==0)
yflag=2;
else
yflag=3;
}
/************************************/
/*  compute (d**p + e**p)/(d + e)   */
/************************************/
Y[0] = 0;
Y[1] = 0;
Y[2] = 0;
Y[3] = d;
for (i=0; i<p-1; i++) {
bigprod(Y[2], Y[3], d, X);
Y[1]=X[0];
Y[2]=X[1];
Y[3]=X[2];
}
Z[0] = 0;
Z[1] = 0;
Z[2] = 0;
Z[3] = e;
for (i=0; i<p-1; i++) {
bigprod(Z[2], Z[3], e, X);
Z[1]=X[0];
Z[2]=X[1];
Z[3]=X[2];
}
if (sumdif==1) {
bigbigs(Y, Z);
temp=d+e;
if (((d+e)/p)*p==(d+e))
temp=temp*p;
bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp);
}
else {
bigbigd(Y, Z);
temp=d-e;
if (((d-e)/p)*p==(d-e))
temp=temp*p;
bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp);
}
S[0]=Y[2];
S[1]=Y[3];
W[0]=S[0];
W[1]=S[1];
/************************************************/
/*  look for prime factors using look-up table	*/
/************************************************/
if (S[0]==0) {
l = (33 - lmbd(1, S[1]))/2;
l = 1 << l;
}
else {
l = (65 - lmbd(1, S[0]))/2;
l = 1 << l;
}
k=0;
if (l>tmptab[tmpsiz-1]) {
flag=1;
k=tmpsiz-1;
}
else {
flag=0;
for (i=0; i<tmpsiz; i++) {
if (tmptab[i] < l) k=i;
else break;
}
}
l=k;
iters=0;
rflag=0xffffffff;
sflag=0xffffffff;
tflag=0xffffffff;
uflag=0xffffffff;
vflag=0xffffffff;
wflag=0xffffffff;
xflag=0xffffffff;
m=0;
for (i=0; i<=l; i++) {
k = tmptab[i];
quotient(S, T, k);
V[0]=T[0];
V[1]=T[1];
bigprod(T[0], T[1], k, X);
if ((S[0]!=X[1]) || (S[1]!=X[2])) continue;
if (psflag==1) {
if (((k-1)/ps)*ps!=(k-1))
}
if (psflag==0) {
if (((k-1)/ps)*ps==(k-1))
}
pflag=0;
if (((k-1)/ps)*ps==(k-1))
pflag=1;
if (iters<numfac) {
rflag=0;
bigresx(0, (k-1)/p, 0, k, U, d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+2048;
bigresx(0, (k-1)/p, 0, k, U, e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+1024;
bigresx(0, (k-1)/p, 0, k, U, d-e);
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+512;
else
rflag=rflag+256;
}
bigresx(0, (k-1)/p, 0, k, U, d+e);
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+256;
else
rflag=rflag+512;
}
bigresx(0, (k-1)/p, 0, k, U, p*d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+128;
bigresx(0, (k-1)/p, 0, k, U, p*e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+64;
bigresx(0, (k-1)/p, 0, k, U, p*(d-e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+32;
else
rflag=rflag+16;
}
bigresx(0, (k-1)/p, 0, k, U, p*(d+e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+16;
else
rflag=rflag+32;
}
bigresx(0, (k-1)/p, 0, k, U, p*p*d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+8;
bigresx(0, (k-1)/p, 0, k, U, p*p*e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+4;
bigresx(0, (k-1)/p, 0, k, U, p*p*(d-e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+2;
else
rflag=rflag+1;
}
bigresx(0, (k-1)/p, 0, k, U, p*p*(d+e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+1;
else
rflag=rflag+2;
}
bigresx(0, (k-1)/p, 0, k, U, p);
Up[0]=U[0];
Up[1]=U[1];
if ((U[0]==0)&&(U[1]==1)) {
if (pflag!=0) {
if (rflag!=0xfff)
error[2]=10;
}
rflag=rflag+4096;
}
else {
if (pflag!=0) {
if (yflag<3) {
if (rflag!=0xd20)
error[2]=11;
}
else {
if (rflag!=0x0d2)
error[2]=11;
}
}
else {
if (qflag==2) {
if (yflag==2) {
if ((rflag!=0x1a4)&&(rflag!=0x168))
error[2]=12;
}
if (yflag==3) {
if ((rflag!=0x816)&&(rflag!=0x41a))
error[2]=12;
}
}
}
}
R[0]=U[0];
R[1]=U[1];
bigresx(0, (k-1)/p, 0, k, U, 2);
if ((U[0]==Up[0])&&(U[1]==Up[1]))
rflag=rflag+32768;
if ((U[0]==0)&&(U[1]==1)) {
rflag=rflag+8192;
if (split==1) {
if (((k-1)/ps)*ps!=(k-1))
error[2]=8;
}
}
bigresx(0, (k-1)/p, 0, k, U, 2*p);
if ((U[0]==0)&&(U[1]==1)) {
if (pflag==0) {
if ((R[0]!=0)||(R[1]!=1)) {
if (qflag==2) {
if (yflag==0) {
if (rflag!=0x816)
error[2]=15;
}
if (yflag==1) {
if (rflag!=0x41a)
error[2]=15;
}
}
else {
if (qflag==0) {
if (rflag!=0x681)
error[2]=16;
}
if (qflag==1) {
if (rflag!=0xa41)
error[2]=16;
}
}
}
}
rflag=rflag+16384;
}
else {
if (pflag==0) {
if ((R[0]!=0)||(R[1]!=1)) {
if (qflag==2) {
if (yflag==0) {
if (rflag!=0x8a41)
error[2]=13;
}
if (yflag==1) {
if (rflag!=0x8681)
error[2]=13;
}
}
else {
if (qflag==0) {
if (rflag!=0x81a4)
error[2]=14;
}
if (qflag==1) {
if (rflag!=0x8168)
error[2]=14;
}
}
}
}
}
}
aloop:	 S[0]=V[0];
S[1]=V[1];
save[m]=k;
if (m < savsiz) m=m+1;
else {
error[0]=3;
goto bskip;
}
quotient(S, T, k);
V[0]=T[0];
V[1]=T[1];
bigprod(T[0], T[1], k, X);
if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop;
iters=iters+1;
if (iters<numfac) {
xflag=wflag;
wflag=vflag;
vflag=uflag;
uflag=tflag;
tflag=sflag;
sflag=rflag;
}
else {
if ((S[0]!=0)||(S[1]!=1))
}
}
/***********************************************/
/*  output prime factors satisfying criterion  */
/***********************************************/
if ((S[0]!=0) || (S[1]!=1)) {
if (flag==1) {
if (S[0]==0) {
j = (33 - lmbd(1, S[1]))/2;
j = 1 << j;
}
else {
j = (65 - lmbd(1, S[0]))/2;
j = 1 << j;
}
for (i=tmptab[tmpsiz-1]; i<j; i+=2*p) {
quotient(S, T, i);
bigprod(T[0], T[1], i, X);
if ((X[1]==S[0]) && (X[2]==S[1])) {
if (psflag==1) {
if (((i-1)/ps)*ps!=(i-1))
}
if (psflag==0) {
if (((i-1)/ps)*ps==(i-1))
}
pflag=0;
if (((i-1)/ps)*ps==(i-1))
pflag=1;
if (iters<numfac) {
rflag=0;
bigresx(0, (i-1)/p, 0, i, U, d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+2048;
bigresx(0, (i-1)/p, 0, i, U, e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+1024;
bigresx(0, (i-1)/p, 0, i, U, d-e);
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+512;
else
rflag=rflag+256;
}
bigresx(0, (i-1)/p, 0, i, U, d+e);
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+256;
else
rflag=rflag+512;
}
bigresx(0, (i-1)/p, 0, i, U, p*d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+128;
bigresx(0, (i-1)/p, 0, i, U, p*e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+64;
bigresx(0, (i-1)/p, 0, i, U, p*(d-e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+32;
else
rflag=rflag+16;
}
bigresx(0, (i-1)/p, 0, i, U, p*(d+e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+16;
else
rflag=rflag+32;
}
bigresx(0, (i-1)/p, 0, i, U, p*p*d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+8;
bigresx(0, (i-1)/p, 0, i, U, p*p*e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+4;
bigresx(0, (i-1)/p, 0, i, U, p*p*(d-e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+2;
else
rflag=rflag+1;
}
bigresx(0, (i-1)/p, 0, i, U, p*p*(d+e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+1;
else
rflag=rflag+2;
}
bigresx(0, (i-1)/p, 0, i, U, p);
Up[0]=U[0];
Up[1]=U[1];
if ((U[0]==0)&&(U[1]==1)) {
if (pflag!=0) {
if (rflag!=0xfff)
error[2]=10;
}
rflag=rflag+4096;
}
else {
if (pflag!=0) {
if (yflag<3) {
if (rflag!=0xd20)
error[2]=11;
}
else {
if (rflag!=0x0d2)
error[2]=11;
}
}
else {
if (qflag==2) {
if (yflag==2) {
if ((rflag!=0x1a4)&&(rflag!=0x168))
error[2]=12;
}
if (yflag==3) {
if ((rflag!=0x816)&&(rflag!=0x41a))
error[2]=12;
}
}
}
}
R[0]=U[0];
R[1]=U[1];
bigresx(0, (i-1)/p, 0, i, U, 2);
if ((U[0]==Up[0])&&(U[1]==Up[1]))
rflag=rflag+32768;
if ((U[0]==0)&&(U[1]==1)) {
rflag=rflag+8192;
if (split==1) {
if (((i-1)/ps)*ps!=(i-1))
error[2]=8;
}
}
bigresx(0, (i-1)/p, 0, i, U, 2*p);
if ((U[0]==0)&&(U[1]==1)) {
if (pflag==0) {
if ((R[0]!=0)||(R[1]!=1)) {
if (qflag==2) {
if (yflag==0) {
if (rflag!=0x816)
error[2]=15;
}
if (yflag==1) {
if (rflag!=0x41a)
error[2]=15;
}
}
else {
if (qflag==0) {
if (rflag!=0x681)
error[2]=16;
}
if (qflag==1) {
if (rflag!=0xa41)
error[2]=16;
}
}
}
}
rflag=rflag+16384;
}
else {
if (pflag==0) {
if ((R[0]!=0)||(R[1]!=1)) {
if (qflag==2) {
if (yflag==0) {
if (rflag!=0x8a41)
error[2]=13;
}
if (yflag==1) {
if (rflag!=0x8681)
error[2]=13;
}
}
else {
if (qflag==0) {
if (rflag!=0x81a4)
error[2]=14;
}
if (qflag==1) {
if (rflag!=0x8168)
error[2]=14;
}
}
}
}
}
}
iters=iters+1;
if (iters<numfac) {
xflag=wflag;
wflag=vflag;
vflag=uflag;
uflag=tflag;
tflag=sflag;
sflag=rflag;
}
if (T[0]<=limit) {	 // largest prime in table is 2751787
S[0]=T[0];
S[1]=T[1];
save[m]=i;
if (m < savsiz) m=m+1;
else {
error[0]=3;
goto bskip;
}
goto cskip;
}
else {
error[0]=4;
goto bskip;
}
}
}
}
cskip:	 if ((S[0]==0)&&(S[1]==1)) {
if (iters!=numfac)
else
goto dskip;
}
if ((S[0]==0)&&(S[1]==save[m])) {
if (iters==numfac)
goto dskip;
else
}
if (iters!=(numfac-1))
if (psflag==1) {
T[0]=0;
T[1]=1;
differ(S,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(S,T);
if ((X[1]!=T[0])||(X[2]!=T[1]))
}
if (psflag==0) {
T[0]=0;
T[1]=1;
differ(S,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(S,T);
if ((X[1]==T[0])&&(X[2]==T[1]))
}
pflag=0;
T[0]=0;
T[1]=1;
differ(S,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(S,T);
if ((X[1]==T[0])&&(X[2]==T[1]))
pflag=1;
T[0]=0;
T[1]=1;
differ(S, T);
quotient(T, T, p);
rflag=0;
bigresx(T[0], T[1], S[0], S[1], U, d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+2048;
bigresx(T[0], T[1], S[0], S[1], U, e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+1024;
bigresx(T[0], T[1], S[0], S[1], U, d-e);
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+512;
else
rflag=rflag+256;
}
bigresx(T[0], T[1], S[0], S[1], U, d+e);
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+256;
else
rflag=rflag+512;
}
bigresx(T[0], T[1], S[0], S[1], U, p*d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+128;
bigresx(T[0], T[1], S[0], S[1], U, p*e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+64;
bigresx(T[0], T[1], S[0], S[1], U, p*(d-e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+32;
else
rflag=rflag+16;
}
bigresx(T[0], T[1], S[0], S[1], U, p*(d+e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+16;
else
rflag=rflag+32;
}
bigresx(T[0], T[1], S[0], S[1], U, p*p*d);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+8;
bigresx(T[0], T[1], S[0], S[1], U, p*p*e);
if ((U[0]==0)&&(U[1]==1))
rflag=rflag+4;
bigresx(T[0], T[1], S[0], S[1], U, p*p*(d-e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+2;
else
rflag=rflag+1;
}
bigresx(T[0], T[1], S[0], S[1], U, p*p*(d+e));
if ((U[0]==0)&&(U[1]==1)) {
if (zflag!=2)
rflag=rflag+1;
else
rflag=rflag+2;
}
bigresx(T[0], T[1], S[0], S[1], U, p);
Up[0]=U[0];
Up[1]=U[1];
if ((U[0]==0)&&(U[1]==1)) {
if (pflag!=0) {
if (rflag!=0xfff)
error[2]=10;
}
rflag=rflag+4096;
}
else {
if (pflag!=0) {
if (yflag<3) {
if (rflag!=0xd20)
error[2]=11;
}
else {
if (rflag!=0x0d2)
error[2]=11;
}
}
else {
if (qflag==2) {
if (yflag==2) {
if ((rflag!=0x1a4)&&(rflag!=0x168))
error[2]=12;
}
if (yflag==3) {
if ((rflag!=0x816)&&(rflag!=0x41a))
error[2]=12;
}
}
}
}
R[0]=U[0];
R[1]=U[1];
bigresx(T[0], T[1], S[0], S[1], U, 2);
if ((U[0]==Up[0])&&(U[1]==Up[1]))
rflag=rflag+32768;
if ((U[0]==0)&&(U[1]==1)) {
rflag=rflag+8192;
if (split==1) {
V[0]=0;
V[1]=1;
differ(S,V);
quotient(V,V,ps);
bigprod(V[0],V[1],ps,X);
V[0]=0;
V[1]=1;
differ(S,V);
if ((X[1]!=V[0])||(X[2]!=V[1]))
error[2]=8;
}
}
bigresx(T[0], T[1], S[0], S[1], U, 2*p);
if ((U[0]==0)&&(U[1]==1)) {
if (pflag==0) {
if ((R[0]!=0)||(R[1]!=1)) {
if (qflag==2) {
if (yflag==0) {
if (rflag!=0x816)
error[2]=15;
}
if (yflag==1) {
if (rflag!=0x41a)
error[2]=15;
}
}
else {
if (qflag==0) {
if (rflag!=0x681)
error[2]=16;
}
if (qflag==1) {
if (rflag!=0xa41)
error[2]=16;
}
}
}
}
rflag=rflag+16384;
}
else {
if (pflag==0) {
if ((R[0]!=0)||(R[1]!=1)) {
if (qflag==2) {
if (yflag==0) {
if (rflag!=0x8a41)
error[2]=13;
}
if (yflag==1) {
if (rflag!=0x8681)
error[2]=13;
}
}
else {
if (qflag==0) {
if (rflag!=0x81a4)
error[2]=14;
}
if (qflag==1) {
if (rflag!=0x8168)
error[2]=14;
}
}
}
}
}
dskip:	 if (n+6>outsiz) {
error[0]=6;
goto bskip;
}
output[n]=d;
output[n+1]=e;
output[n+2]=(yflag<<16)|(m+1);
output[n+3]=(xflag<<16)|wflag;
output[n+4]=(vflag<<16)|uflag;
output[n+5]=(tflag<<16)|sflag;
xflag=rflag&sflag&tflag&uflag&vflag&wflag&wflag;
output[n+6]=(rflag<<16)|xflag;
for (i=0; i<m; i++) {
bigprod(S[0], S[1], save[i], X);
S[0] = X[1];
S[1] = X[2];
}
if ((S[0]!=W[0]) || (S[1]!=W[1])) {
error[0]=7;
goto bskip;
}
T[0]=0;
T[1]=1;
differ(S,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(S,T);
if ((X[1]!=T[0])||(X[2]!=T[1]))
error[1]+=1;
n=n+7;
count=count+1;
if ((numfac==2)&&(split==0)&&(psflag==0)) {
if ((yflag==0)||(yflag==1)) {
if (rflag!=sflag)
error[2]=8;
if ((rflag&0xf000)==0x2000)
error[2]=8;
T[0]=0;
T[1]=1;
differ(W,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(W,T);
if ((X[1]!=T[0])||(X[2]!=T[1]))
error[2]=8;
}
else {
if ((rflag!=0xf333)&&(sflag!=0xf333)) {
if ((rflag&0xf000)!=0x2000)
error[2]=9;
if ((sflag&0xf000)!=0x2000)
error[2]=9;
}
T[0]=0;
T[1]=1;
differ(W,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(W,T);
if ((X[1]!=T[0])||(X[2]!=T[1]))
error[2]=9;
}
}
}
//
// S[0]=0, S[1]=1
//
else {
if (iters!=numfac)
if (n+6>outsiz) {
error[0]=6;
goto bskip;
}
output[n]=d;
output[n+1]=e;
output[n+2]=(yflag<<16)|m;
output[n+3]=(xflag<<16)|wflag;
output[n+4]=(vflag<<16)|uflag;
output[n+5]=(tflag<<16)|sflag;
xflag=rflag&sflag&tflag&uflag&vflag&wflag&wflag;
output[n+6]=(rflag<<16)|xflag;
S[0]=0;
S[1]=1;
for (i=0; i<m; i++) {
bigprod(S[0], S[1], save[i], X);
S[0] = X[1];
S[1] = X[2];
}
if ((S[0]!=W[0]) || (S[1]!=W[1])) {
error[0]=7;
goto bskip;
}
T[0]=0;
T[1]=1;
differ(S,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(S,T);
if ((X[1]!=T[0])||(X[2]!=T[1]))
error[1]+=1;
n=n+7;
count=count+1;
if ((numfac==2)&&(split==0)&&(psflag==0)) {
if ((yflag==0)||(yflag==1)) {
if (rflag!=sflag)
error[2]=8;
if ((rflag&0xf000)==0x2000)
error[2]=8;
T[0]=0;
T[1]=1;
differ(W,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(W,T);
if ((X[1]!=T[0])||(X[2]!=T[1]))
error[2]=8;
}
else {
if ((rflag!=0xf333)&&(sflag!=0xf333)) {
if ((rflag&0xf000)!=0x2000)
error[2]=9;
if ((sflag&0xf000)!=0x2000)
error[2]=9;
}
T[0]=0;
T[1]=1;
differ(W,T);
quotient(T,T,ps);
bigprod(T[0],T[1],ps,X);
T[0]=0;
T[1]=1;
differ(W,T);
if ((X[1]!=T[0])||(X[2]!=T[1]))
error[2]=9;
}
}
}
zflag=-1;
zflag+=1;
if (zflag==2)
goto zloop;
}
bskip:
output[n]=0xffffffff;
fprintf(Outfp," error0=%d count=%d error2=%d \n",error[0],error[1],error[2]);
fprintf(Outfp," count=%d \n",(n+1)/7);
for (i=0; i<(n+1)/7; i++)
fprintf(Outfp," %#9x %#9x %#10x %#10x %#10x %#10x %#6x %#6x \n",
output[7*i],output[7*i+1],output[7*i+2],output[7*i+3],output[7*i+4],
output[7*i+5],(unsigned short)(output[7*i+6]>>16),
(unsigned short)(output[7*i+6]&0xffff));
if (error[2]!=0)
printf(" error=%d \n",error[2]);
zskip:
fclose(Outfp);
return(0);
}
```