/*****************************************************************************/ /* */ /* FACTOR (a**p-b**p)/(a-b) (when [(a**p+b**p)/(a+b)] is a pth power) */ /* 11/03/06 (dkc) */ /* */ /* This C program determines if q is a pth power with respect to */ /* (a**p-b**p)/(a-b). Use "table4a.h" for a<=2000000 and "table6a.h" for */ /* for 2000000<a<=2500000. Use "table7a" for 2500000<a<=3000000. Modify */ /* "insize" accordingly. */ /* */ /* The output is "a, b, (number of prime factors<<16)|code". The code is */ /* set to 0, 1, 2, or 3 when p divides a, b, a-b, or a+b respectively. */ /* Setting "select" to 0, 1, 2, 3, 4, 5, or 6 selects a, b, a-b, a+b, p, */ /* 2, or 2*p respectively as the base (q). When "select" ranges from */ /* 0 to 3, setting "pflag" to 1 multplies the base by p and setting "pflag" */ /* to 2 multiplies the base by p*p. 2*p must divide a, b, a-b, or a+b */ /* when "split" is set to 0, and 2*p must not divide a, b, a-b, or a+b when */ /* "split" is set to 1. The prime factors of [(a**p-b**p)/(a-b)] must not */ /* be of the form p**2*k+1 when "psflag" is set to 0, and the prime factors */ /* of [(a**p-b**p)/(a-b)] must be of the form p**2*k+1 when "psflag" is set */ /* to 1. */ /* */ /* When "split" equals 0 and "select" equals 2 or 3, "pflag" should be set */ /* to 1. When "split" equals 1 and "select" equals 0 or 1, "pflag" should */ /* be set to 1. */ /* */ /* When "split" equals 0, "code" equals "select", and "base" is not a pth */ /* power w.r.t [(a**p-b**p)/(a-b)], then an error is indicated ("error[0]" */ /* is set to 8). This confirms Proposition (12). */ /* */ /* When "split" equals 0, "select" equals 5, "code" equals 2 or 3, and */ /* "base" is not a pth power w.r.t. [(a**p-b**p)/(a-b)], then an error is */ /* is indicated ("error[0]" is set to 9). This confirms Proposition (13). */ /* */ /* When "split" equals 1 and "select" equals 5, the output count is 0. */ /* This confirms part of Proposition (3). */ /* */ /* When "split" equals 1 and "select" equals 4, the output count is 0. */ /* This confirms the rest of Proposition (3). */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table7a.h" void differ(unsigned int *a, unsigned int *b); void bigbigs(unsigned int *a, unsigned int *b); void bigbigd(unsigned int *a, unsigned int *b); void bigbigq(unsigned int a0, unsigned int a1, unsigned int a2, unsigned int a3, unsigned int *quotient, unsigned int d2, unsigned int d3); unsigned int lmbd(unsigned int mode, unsigned int a); void dummy(unsigned int a, unsigned int b, unsigned int c); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); int main () { unsigned int p=3; // input prime unsigned int select=4; // select d, e, d-e, d+e, p, 2, or 2*p unsigned int pflag=0; // if set to 1, base = base*p for "select" = 0 to 3 // if set to 2, base = base*p*p for "select"=0 to 3 unsigned int split=1; // if set to 0, 2*p must divide a, b, a-b, or a+b // if set to 1, 2*p must not divide a, b, a-b, or a+b // otherwise, no restrictions unsigned int psflag=2; // if set to 1, factors must be of the form p**2*k+1 // if set to 0, factors must not be of the form p**2*k+1 // otherwise, factors can be of mixed types unsigned int qflag=4; // if set to 0, p must divide a+b // if set to 1, p must divide a-b // if set to 2, p must divide a // if set to 3, p must divide b // otherwise, no restrictions unsigned int prmflg=0; // if set to 1, [(a**p-b**p)/(a-b)] must be prime unsigned int offset=0; // offset into the input look-up table (must be // even and less than "insize"). Used to reduce // execution time. extern unsigned int input[]; extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int output[]; extern unsigned int terror[]; extern unsigned int count; unsigned int insize=866; // table7a //unsigned int insize=1068; // table6a //unsigned int insize=6818; // table4a unsigned int maxsiz=200000; unsigned int tsize=1228; unsigned int tmpsiz; unsigned int outsiz=10000*3; unsigned int save[20]; // solutions array unsigned int savsiz=19; // size of solutions array minus one unsigned int d,e,c; unsigned int h,i,j,k,l,m,q,limit; unsigned int flag,base,temp,tflag,sumdif,ps,pc,wrap; unsigned int S[2],T[2],U[2],V[2],W[2],X[3],Y[4],Z[4]; int zflag; unsigned int n=0; FILE *Outfp; Outfp = fopen("out6.dat","w"); /*********************************/ /* extend prime look-up table */ /*********************************/ tmpsiz=0; for (i=0; i<tsize; i++) { j = (int)(table[i]); if (((j-1)/p)*p==(j-1)) { tmptab[tmpsiz] = j; tmpsiz=tmpsiz+1; } } for (d=10001; d<10000000; d++) { if (((d-1)/p)*p!=(d-1)) continue; if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(2.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; if (tmpsiz>=maxsiz) break; } } printf("size=%d, prime=%d \n",tmpsiz,tmptab[tmpsiz-1]); tmpsav=tmpsiz; limit=(tmptab[tmpsiz-1])>>16; limit=limit*limit; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ terror[0]=0; // clear error array terror[1]=0; terror[2]=0; ps=p*p; pc=ps*p; zflag=0; q=0; count=0; wrap=0; for (h=offset; h<insize; h++) { if (wrap>8) { printf("input count=%d \n",h+1); wrap=0; } else wrap=wrap+1; zloop: if (zflag<2) { d=input[3*h]; e=input[3*h+1]; c=input[3*h+2]; if (qflag==0) { if (((d+e)/p)*p!=(d+e)) goto askip; } if (qflag==1) { if (((d-e)/p)*p!=(d-e)) goto askip; } if (qflag==2) { if ((d/p)*p!=d) goto askip; } if (qflag==3) { if ((e/p)*p!=e) goto askip; } sumdif=0; } else { d=input[3*(h-1)+1]; e=input[3*h+1]; c=input[3*h+2]; if (qflag==0) { if (((d-e)/p)*p!=(d-e)) goto askip; } if (qflag==1) { if (((d+e)/p)*p!=(d+e)) goto askip; } if (qflag==2) { if ((d/p)*p!=d) goto askip; } if (qflag==3) { if ((e/p)*p!=e) goto askip; } sumdif=1; } // dummy(d,e,0); if ((d/p)*p==d) { if (((d/2)*2==d)&&((d/ps)*ps!=d)) { printf("error: p^2 does not divide d \n"); goto zskip; } tflag=0; if (split==0) { if ((d/2)*2!=d) goto askip; } if (split==1) { if ((d/2)*2==d) goto askip; } } if ((e/p)*p==e) { if (((e/2)*2==e)&&((e/ps)*ps!=e)) { printf("error: p^2 does not divide e \n"); goto zskip; } tflag=1; if (split==0) { if ((e/2)*2!=e) goto askip; } if (split==1) { if ((e/2)*2==e) goto askip; } } if (((d+e)/p)*p==(d+e)) { if ((sumdif==0)&&((((d+e)/2)*2==(d+e))&&(((d+e)/pc)*pc!=(d+e)))) { printf("error: p^3 does not divide d+e \n"); goto zskip; } if ((sumdif==1)&&((((d+e)/2)*2==(d+e))&&(((d+e)/ps)*ps!=(d+e)))) { printf("error: p^2 does not divide d-e \n"); goto zskip; } if (sumdif==0) tflag=3; else tflag=2; if (split==0) { if (((d+e)/2)*2!=(d+e)) goto askip; } if (split==1) { if (((d+e)/2)*2==(d+e)) goto askip; } } if (((d-e)/p)*p==(d-e)) { if ((sumdif==0)&&((((d-e)/2)*2==(d-e))&&(((d-e)/ps)*ps!=(d-e)))) { printf("error: p^2 does not divide d-e \n"); goto zskip; } if ((sumdif==1)&&((((d-e)/2)*2==(d-e))&&(((d-e)/pc)*pc!=(d-e)))) { printf("error: p^3 does not divide d+e \n"); goto zskip; } if (sumdif==0) tflag=2; else tflag=3; if (split==0) { if (((d-e)/2)*2!=(d-e)) goto askip; } if (split==1) { if (((d-e)/2)*2==(d-e)) goto askip; } } if (select==0) base=d; if (select==1) base=e; if (select==2) { if (sumdif==0) base=d-e; else base=d+e; } if (select==3) { if (sumdif==0) base=d+e; else base=d-e; } if (pflag==1) base=base*p; if (pflag==2) base=base*p*p; if (select==4) base=p; if (select==5) base=2; if (select==6) base=2*p; /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ Y[0] = 0; Y[1] = 0; Y[2] = 0; Y[3] = d; for (i=0; i<p-1; i++) { bigprod(Y[2], Y[3], d, X); Y[1]=X[0]; Y[2]=X[1]; Y[3]=X[2]; } Z[0] = 0; Z[1] = 0; Z[2] = 0; Z[3] = e; for (i=0; i<p-1; i++) { bigprod(Z[2], Z[3], e, X); Z[1]=X[0]; Z[2]=X[1]; Z[3]=X[2]; } if (sumdif==1) { bigbigs(Y, Z); temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } else { bigbigd(Y, Z); temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } S[0]=Y[2]; S[1]=Y[3]; W[0]=S[0]; W[1]=S[1]; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]==0) { l = (33 - lmbd(1, S[1]))/2; l = 1 << l; } else { l = (65 - lmbd(1, S[0]))/2; l = 1 << l; } k=0; if (l>tmptab[tmpsiz-1]) { flag=1; k=tmpsiz-1; } else { flag=0; for (i=0; i<tmpsiz; i++) { if (tmptab[i] < l) k=i; else break; } } l=k; m=0; for (i=0; i<=l; i++) { k = tmptab[i]; quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; if (psflag==1) { if (((k-1)/ps)*ps!=(k-1)) goto askip; } if (psflag==0) { if (((k-1)/ps)*ps==(k-1)) goto askip; } bigresx(0, (k-1)/p, 0, k, U, base); if ((U[0]!=0)||(U[1]!=1)) { if (split==0) { if (tflag==select) terror[0]=8; } if (split==1) { if ((tflag==0)&&(select==0)) terror[0]=8; if ((tflag==1)&&(select==1)) terror[0]=8; } if (split==0) { if ((select==5)&&((tflag==2)||(tflag==3))) terror[0]=9; } goto askip; } aloop: S[0]=V[0]; S[1]=V[1]; save[m]=k; if (m < savsiz) m=m+1; else { terror[0]=3; goto bskip; } quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; } /***********************************************/ /* output prime factors satisfying criterion */ /***********************************************/ if ((S[0]!=0) || (S[1]!=1)) { if (flag==1) { if (S[0]==0) { j = (33 - lmbd(1, S[1]))/2; j = 1 << j; } else { j = (65 - lmbd(1, S[0]))/2; j = 1 << j; } for (i=tmptab[tmpsiz-1]; i<j; i+=2*p) { quotient(S, T, i); bigprod(T[0], T[1], i, X); if ((X[1]==S[0]) && (X[2]==S[1])) { if (psflag==1) { if (((i-1)/ps)*ps!=(i-1)) goto askip; } if (psflag==0) { if (((i-1)/ps)*ps==(i-1)) goto askip; } bigresx(0, (i-1)/p, 0, i, U, base); if ((U[0]!=0)||(U[1]!=1)) { if (split==0) { if (tflag==select) terror[0]=8; } if (split==1) { if ((tflag==0)&&(select==0)) terror[0]=8; if ((tflag==1)&&(select==1)) terror[0]=8; } if (split==0) { if ((select==5)&&((tflag==2)||(tflag==3))) terror[0]=9; } goto askip; } if (T[0]<=limit) { // largest prime in table is 5801977 S[0]=T[0]; S[1]=T[1]; save[m]=i; if (m < savsiz) m=m+1; else { terror[0]=3; goto bskip; } goto cskip; } else { terror[0]=4; goto bskip; } } } } cskip: if (psflag==1) { T[0]=0; T[1]=1; differ(S,T); quotient(T,T,ps); bigprod(T[0],T[1],ps,X); T[0]=0; T[1]=1; differ(S,T); if ((X[1]!=T[0])||(X[2]!=T[1])) goto askip; } if (psflag==0) { T[0]=0; T[1]=1; differ(S,T); quotient(T,T,ps); bigprod(T[0],T[1],ps,X); T[0]=0; T[1]=1; differ(S,T); if ((X[1]==T[0])&&(X[2]==T[1])) goto askip; } T[0]=0; T[1]=1; differ(S, T); quotient(T, T, p); bigresx(T[0], T[1], S[0], S[1], T, base); if ((T[0]==0)&&(T[1]==1)) { if (n+2>outsiz) { terror[0]=6; goto bskip; } output[n]=d; output[n+1]=e; output[n+2]=((m+1)<<16)|tflag; if (m>1) { if (q<999) { terror[2*q+2]=d; terror[2*q+3]=e; } q+=1; terror[1]=q; } T[0]=S[0]; T[1]=S[1]; for (i=0; i<m; i++) { bigprod(T[0], T[1], save[i], X); T[0] = X[1]; T[1] = X[2]; } if ((T[0]!=W[0]) || (T[1]!=W[1])) { terror[0]=7; goto bskip; } if ((prmflg==0)||(m==0)) { n=n+3; count=count+1; } } else { if (split==0) { if (tflag==select) terror[0]=8; } if (split==1) { if ((tflag==0)&&(select==0)) terror[0]=8; if ((tflag==1)&&(select==1)) terror[0]=8; } if (split==0) { if ((select==5)&&((tflag==2)||(tflag==3))) terror[0]=9; } goto askip; } } else { if (n+2>outsiz) { terror[0]=6; goto bskip; } output[n]=d; output[n+1]=e; output[n+2]=(m<<16)|tflag; if (m>2) { if (q<999) { terror[2*q+2]=d; terror[2*q+3]=e; } q+=1; terror[1]=q; } S[0]=0; S[1]=1; for (i=0; i<m; i++) { bigprod(S[0], S[1], save[i], X); S[0] = X[1]; S[1] = X[2]; } if ((S[0]!=W[0]) || (S[1]!=W[1])) { terror[0]=7; goto bskip; } if ((prmflg==0)||(m==1)) { n=n+3; count=count+1; } } askip: if (zflag==2) zflag=-1; zflag+=1; if (zflag==2) goto zloop; } bskip: output[n]=0xffffffff; fprintf(Outfp," error0=%d \n",terror[0]); fprintf(Outfp," count=%d \n",(n+1)/3); for (i=0; i<(n+1)/3; i++) fprintf(Outfp," %#10x %#10x %#10x \n",output[3*i],output[3*i+1], output[3*i+2]); zskip: fclose(Outfp); return(0); }