/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/03/06 (dkc) */ /* */ /* This C program finds a and b such that (a**p + b**p)/(a + b) is a cube */ /* or p times a cube. (a**p + b**p)/(a + b) must have two distinct prime */ /* factors. p is set to 3. */ /* */ /* The output is "a, b". If 2p divides a and p**2 does not divide a, then */ /* an error is indicated ("error[1]" is set to a non-zero value). b and */ /* a-b are treated similarly. If 2p divides a+b and p**3 does not divide */ /* a+b, then an error is indicated. If 2 divides a, p does not divide a, */ /* and a/2 is not a pth power modulus p**2, then an error is indicated */ /* ("error[2]" is set to a non-zero value). If a+b is odd, p divides a+b, */ /* and (a+b)/p is not a pth power modulus p**2, then an error is indicated */ /* ("error[3]" is set to a non-zero value). If a+b is odd, p divides a+b, */ /* and p**2 divides a+b, then an error is indicated. If a is odd and p */ /* divides a, then an error is indicated ("error4" is set to a non-zero */ /* value). b and a-b are treated similarly. */ /* */ /* The rest of Proposition (5) can be verified by examining the output. */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table0a.h" unsigned int lmbd(unsigned int mode, unsigned int a); void dummy(unsigned int a, unsigned int b, unsigned int c); void sum(unsigned int *addend, unsigned int *augend); void differ(unsigned int *minuend, unsigned int *subtrahend); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); int main () { unsigned int p=3; // input prime unsigned int dbeg=10000; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=4160; unsigned int sumdif=1; // select [(a**p+b**p)/(a+b)] if "sumdif" is non-zero // or [(a**p-b**p)/(a-b)] otherwise extern unsigned short table3[]; extern unsigned int output[]; extern unsigned int error[]; unsigned int t3size=2556; unsigned int outsiz=999; unsigned int n=0; unsigned int d,e,a,b,temp,dsum; unsigned int i,j,k,l,m; unsigned int flag,ps,pc; unsigned int S[2],T[2],V[2],X[3]; double recip7,croot2,croot4; FILE *Outfp; Outfp = fopen("out5b.dat","w"); recip7=1.0/7.0; croot2=1.259921/7.0; croot4=1.587401/7.0; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ ps=p*p; pc=ps*p; error[0]=0; // clear error array error[1]=0; error[2]=0; error[3]=0; for (d=dbeg; d>=dend; d--) { for (e=d-1; e>0; e--) { dummy(d,e,0); // if (e!=stop) continue; /*******************************/ /* check for common factors */ /*******************************/ if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ if (sumdif!=0) dsum=d+e; else dsum=d-e; S[0]=0; S[1]=d; for (i=0; i<p-1; i++) { bigprod(S[0], S[1], d, X); S[0]=X[1]; S[1]=X[2]; } T[0]=0; T[1]=e; for (i=0; i<p-1; i++) { bigprod(T[0], T[1], e, X); T[0]=X[1]; T[1]=X[2]; } if (sumdif!=0) sum(S, T); else differ(S, T); quotient(T, S, dsum); /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]==0) l = 32 - lmbd(1, S[1]); else l = 64 - lmbd(1, S[0]); j=l-(l/3)*3; l=l/3; l = 1 << l; if (j==0) l=(int)(((double)(l))*recip7); if (j==1) l=(int)(((double)(l))*croot2); if (j==2) l=(int)(((double)(l))*croot4); l=l+1; if (l>table3[t3size-1]) { error[0]=5; goto bskip; } else { k=0; for (i=0; i<t3size; i++) { if (table3[i] < l) k=i; else break; } } j=0; for (i=0; i<=k; i++) { m=0; l = table3[i]; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; aloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; if ((m/3)*3!=m) goto askip; else { j=i+1; break; } } if ((m/3)*3!=m) continue; if ((S[0]==X[1]) && (S[1]==X[2])) continue; if ((S[0]==0)&&(S[1]==1)) continue; m=0; for (i=j; i<=k; i++) { m=0; l = table3[i]; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; bloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto bloop; if ((m/3)*3!=m) goto askip; else break; } if ((m/3)*3!=m) continue; if ((S[0]!=0) || (S[1]!=1)) continue; if (n+1>outsiz) { error[0]=6; n=n-2; } if ((d/2)*2==d) { if ((d/p)*p==d) { if ((d/ps)*ps!=d) error[1]+=1; } else { flag=0; if ((((d/2)-1)/ps)*ps==((d/2)-1)) flag=1; if ((((d/2)+1)/ps)*ps==((d/2)+1)) flag=1; if (flag==0) error[2]+=1; } } else { if ((d/p)*p==d) error[4]+=1; } if ((e/2)*2==e) { if ((e/p)*p==e) { if ((e/ps)*ps!=e) error[1]+=1; } else { flag=0; if ((((e/2)-1)/ps)*ps==((e/2)-1)) flag=1; if ((((e/2)+1)/ps)*ps==((e/2)+1)) flag=1; if (flag==0) error[2]+=1; } } else { if ((e/p)*p==e) error[4]+=1; } if (sumdif!=0) { if (((d-e)/2)*2==(d-e)) { if (((d-e)/p)*p==(d-e)) { if (((d-e)/ps)*ps!=(d-e)) error[1]+=1; } } else { if (((d-e)/p)*p==(d-e)) error[4]+=1; } if (((d+e)/2)*2==(d+e)) { if (((d+e)/p)*p==(d+e)) { if (((d+e)/pc)*pc!=(d+e)) error[1]+=1; } } else { if (((d+e)/p)*p==(d+e)) { if (((d+e)/ps)*ps==(d+e)) error[3]+=1; flag=0; if (((((d+e)/p)-1)/ps)*ps==(((d+e)/p)-1)) flag=1; if (((((d+e)/p)+1)/ps)*ps==(((d+e)/p)+1)) flag=1; if (flag==0) error[3]+=1; } } } else { if (((d+e)/2)*2==(d+e)) { if (((d+e)/p)*p==(d+e)) { if (((d+e)/ps)*ps!=(d+e)) error[1]+=1; } } else { if (((d+e)/p)*p==(d+e)) error[4]+=1; } if (((d-e)/2)*2==(d-e)) { if (((d-e)/p)*p==(d-e)) { if (((d-e)/pc)*pc!=(d-e)) error[1]+=1; } } else { if (((d-e)/p)*p==(d-e)) { if (((d-e)/ps)*ps==(d-e)) error[3]+=1; flag=0; if (((((d-e)/p)-1)/ps)*ps==(((d-e)/p)-1)) flag=1; if (((((d-e)/p)+1)/ps)*ps==(((d-e)/p)+1)) flag=1; if (flag==0) error[3]+=1; } } } output[n]=d; output[n+1]=e; n=n+2; askip:temp=0; } } bskip: output[n]=-1; fprintf(Outfp," error0=%d error1=%d error2=%d error3=%d error4=%d \n", error[0],error[1],error[2],error[3],error[4]); fprintf(Outfp," count=%d \n",(n+1)/2); for (i=0; i<(n+1)/2; i++) fprintf(Outfp," %#10x, %#10x, \n",output[2*i],output[2*i+1]); fclose(Outfp); if ((error[1]!=0)||(error[2]!=0)||(error[3]!=0)||(error[4]!=0)) printf(" error \n"); return(0); }