/*****************************************************************************/ /* */ /* FACTOR (a**p + b**p)/(a + b) */ /* 03/15/14 (dkc) */ /* */ /* This C program determines if p is a pth power with respect to */ /* (a**p + b**p)/(a+b). p must divide a, b, a-b or a+b. Whether p**2 */ /* divides a, b, a-b, or a+b is determined. Whether the prime factors of */ /* [(a^p+b^p)/(a+b)] are of the form p^2k+1 is determined. */ /* */ /* The output is "(a<<16)|b". If p**2 does not divide a, b, or a-b, then */ /* an error is indicated ("error[1]" is set to a non-zero value). If p>3 */ /* and p**2 does not divide a+b, then an error is indicated. If p=3 and */ /* p**3 does not divide a+b when p**2 divides a+b, then an error is */ /* indicated. */ /* */ /* Note: Prime [(a^p+b^p)/(a+b)] are sometimes not checked for "very large" */ /* [(a^p+b^p)/(a+b)] values. */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table12.h" unsigned int lmbd(unsigned int mode, unsigned int a); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void bigbigd(unsigned int *a, unsigned int *b); void differ(unsigned int *a, unsigned int *b); void dummy(unsigned int a, unsigned int b, unsigned int c); void bigbigs(unsigned int *addend, unsigned int *augend); void bigbigq(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f, unsigned int g); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); void quotient(unsigned int *a, unsigned int *b, unsigned int c); void newprod(unsigned int a, unsigned int b, unsigned int c, unsigned *d, unsigned int e); int main () { // // Note: The maximum "dbeg" value for p=3 is about 2^32. // The maximum "dbeg" value for p=5 is about 2^20. // The maximum "dbeg" value for p=7 is about 2^14. // The maximum "dbeg" value for p=11 is about 2^9. // unsigned int p=7; // input prime unsigned int dbeg=1000; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=57; unsigned int sumdif=1; // select [(a**p+b**p)/(a+b)] if "sumdif" is non- // zero, or [(a**p-b**p)/(a-b)] otherwise unsigned int correct=0; // There is a small probability that (a**p+b**p)/(a+b) is not // completely factored if "correct" is not set to 1. unsigned int out=0; // output flag extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int output[]; extern unsigned int error[]; extern unsigned int tmpsav; extern unsigned int count; unsigned int maxsiz=50000; unsigned int tsize=1228; unsigned int tmpsiz; unsigned int outsiz=1999; unsigned int save[16]; // solutions array unsigned int savsiz=15; // size of solutions array minus one unsigned int d,e,a,b,temp,lcount,scount,tcount; unsigned int i,j,k,l,m; unsigned int flag,limit,dflag,xflag,pflag,qflag; unsigned int S[4],T[4],U[4],V[4],W[4],X[4],Y[4],Z[4]; unsigned int ps,pc,minfac; unsigned int n=0; double sqrt2=1.4142135; FILE *Outfp; Outfp = fopen("out42.dat","w"); /*********************************/ /* extend prime look-up table */ /*********************************/ error[0]=0; error[1]=0; tmpsiz=0; for (i=0; i<tsize; i++) { j = (int)(table[i]); if (((j-1)/p)*p==(j-1)) { tmptab[tmpsiz] = j; tmpsiz=tmpsiz+1; } } for (d=9975; d<(9971*9971); d++) { if (((d-1)/p)*p!=(d-1)) continue; if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(2.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; if (tmpsiz>=maxsiz) break; } } tmpsav=tmpsiz; limit=(tmptab[tmpsiz-1])>>16; limit=limit*limit; printf("count=%d, prime=%d \n",tmpsav,tmptab[tmpsiz-1]); /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ minfac=0x7fffffff; lcount=0; scount=0; tcount=0; ps=p*p; pc=ps*p; error[1]=0; error[2]=0; error[3]=0; error[4]=0; error[5]=0; error[6]=0; error[7]=0; error[8]=0; error[9]=0; count=0; for (d=dbeg; d>=dend; d--) { for (e=d-1; e>0; e--) { // if (e!=stop) continue; /******************************************/ /* check for common factors of d and e */ /******************************************/ if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /********************************************/ /* check if p**2 divide a, b, a+b or a-b */ /********************************************/ xflag=0; if ((d/p)*p==d) { xflag=d; goto jump; } if ((e/p)*p==e) { xflag=e; goto jump; } if (sumdif!=0) { if (((d-e)/p)*p==(d-e)) { xflag=d-e; goto jump; } if (p==3) { if (((d+e)/ps)*ps!=(d+e)) continue; else xflag=d+e; } else { if (((d+e)/p)*p!=(d+e)) continue; else xflag=d+e; } } else { if (((d+e)/p)*p==(d+e)) { xflag=d+e; goto jump; } if (p==3) { if (((d-e)/ps)*ps!=(d-e)) continue; else xflag=d-e; } else { if (((d-e)/p)*p!=(d-e)) continue; else xflag=d-e; } } jump: dflag=0; if ((d/ps)*ps==d) { dflag=d; goto zskip; } if ((e/ps)*ps==e) { dflag=e; goto zskip; } if (sumdif!=0) { if (((d-e)/ps)*ps==(d-e)) { dflag=d-e; goto zskip; } if (p==3) { if (((d+e)/pc)*pc==(d+e)) dflag=d+e; } else { if (((d+e)/ps)*ps==(d+e)) dflag=d+e; } } else { if (((d+e)/ps)*ps==(d+e)) { dflag=d+e; goto zskip; } if (p==3) { if (((d-e)/pc)*pc==(d-e)) dflag=d-e; } else { if (((d-e)/ps)*ps==(d-e)) dflag=d-e; } } /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ zskip:Y[0]=0; Y[1]=0; Y[2]=0; Y[3]=d; for (i=0; i<p-1; i++) newprod(Y[1],Y[2],Y[3],Y,d); Z[0]=0; Z[1]=0; Z[2]=0; Z[3]=e; for (i=0; i<p-1; i++) newprod(Z[1],Z[2],Z[3],Z,e); if (sumdif==1) { bigbigs(Y, Z); temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } else { bigbigd(Y, Z); temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } W[0]=Y[0]; W[1]=Y[1]; W[2]=Y[2]; W[3]=Y[3]; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (Y[0]!=0) { printf("S value too big \n"); goto zskip; } if (Y[1]!=0) l=96-lmbd(1,Y[1]); else { if (Y[2]!=0) l=64-lmbd(1,Y[2]); else l=32-lmbd(1,Y[3]); } j=l-(l/2)*2; l=l/2; if (l>28) { flag=1; k=tmpsiz-1; goto ajump; } l = 1 << l; if (j==1) l=(int)(((double)(l))*sqrt2); l=l+1; flag=0; if (l>tmptab[tmpsiz-1]) { flag=1; k=tmpsiz-1; } else { k=0; for (i=0; i<tmpsiz; i++) { if (tmptab[i] < l) k=i; else break; } } ajump:m=0; for (i=0; i<savsiz; i++) save[i]=0; for (i=0; i<=k; i++) { l = tmptab[i]; bigbigq(Y[0],Y[1],Y[2],Y[3],T,0,l); V[0]=T[0]; V[1]=T[1]; V[2]=T[2]; V[3]=T[3]; newprod(T[1],T[2],T[3],T,l); if ((Y[0]!=T[0])||(Y[1]!=T[1])||(Y[2]!=T[2])||(Y[3]!=T[3])) continue; aloop: Y[0]=V[0]; Y[1]=V[1]; Y[2]=V[2]; Y[3]=V[3]; save[m]=l; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } bigbigq(Y[0], Y[1], Y[2], Y[3], T, 0, l); V[0]=T[0]; V[1]=T[1]; V[2]=T[2]; V[3]=T[3]; newprod(T[1],T[2],T[3],T,l); if ((Y[0]==T[0])&&(Y[1]==T[1])&&(Y[2]==T[2])&&(Y[3]==T[3])) goto aloop; } /***********************************************/ /* output prime factors satisfying criterion */ /***********************************************/ if ((Y[0]!=0)||(Y[1]!=0)||(Y[2]>0x3fffffff)) goto askip; S[0]=Y[2]; S[1]=Y[3]; if ((S[0]!=0) || (S[1]!=1)) { if ((flag==1) && (correct==1)) { if (S[0]==0) j = (32 - lmbd(1, S[1])); else j = (64 - lmbd(1, S[0])); k=j-(j/2)*2; j=j/2; j = 1 << j; if (k==1) j=(int)(((double)(j))*sqrt2); for (i=tmptab[tmpsiz-1]; i<j; i+=2*p) { quotient(S, T, i); bigprod(T[0], T[1], i, X); if ((X[1]==S[0]) && (X[2]==S[1])) { bigresx(0, (i-1)/p, 0, i, U, p); if ((U[0]!=0)||(U[1]!=1)) { goto askip; } if (T[0]<=limit) { // largest prime in table is 0x126f5f S[0]=T[0]; // for p=7 S[1]=T[1]; save[m]=i; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } goto cskip; } else { error[0]=4; goto bskip; } } } } cskip: T[0]=0; T[1]=1; differ(S, T); quotient(T, T, p); bigresx(T[0], T[1], S[0], S[1], U, p); if ((U[0]==0)&&(U[1]==1)) { // // check if of the form p^2k+1 // qflag=1; T[0]=0; T[1]=1; differ(S, T); quotient(T, U, ps); bigprod(U[0],U[1],ps,X); if ((X[1]==T[0])&&(X[2]==T[1])) qflag=0; // T[0]=0; T[1]=0; T[2]=S[0]; T[3]=S[1]; pflag=1; for (i=0; i<m; i++) { l=save[i]; bigresx(0, (l-1)/p, 0, l, U, p); if ((U[0]!=0)||(U[1]!=1)) goto askip; newprod(T[1],T[2],T[3],T,l); if (((l-1)/ps)*ps==(l-1)) { pflag=0; if (l<minfac) minfac=l; } } if ((T[0]!=W[0])||(T[1]!=W[1])||(T[2]!=W[2])||(T[3]!=W[3])) { error[0]=7; goto bskip; } if (out!=0) { if (n>outsiz) { error[0]=6; goto bskip; } output[n]=((int)(d) << 16) | (int)(e); n=n+1; } if (m>0) { count=count+1; tcount=tcount+m+1; printf("d=%d, e=%d, m=%d, f=%d %d %d %d %d %d %#010x %#010x \n",d,e,m+1,save[0],save[1],save[2],save[3],save[4], save[6], S[0],S[1]); fprintf(Outfp,"d=%d, e=%d, m=%d, f=%d %d %d %d %d %d %#010x %#010x \n",d,e,m+1,save[0],save[1],save[2],save[3],save[4], save[6], S[0],S[1]); if (pflag==0) { printf("small p^2*k+1: d=%d, e=%d \n",d,e); fprintf(Outfp,"small p^2*k+1: d=%d, e=%d \n",d,e); scount=scount+1; } if (qflag==0) { printf("large p^2*k+1: d=%d, e=%d \n",d,e); fprintf(Outfp,"large p^2*k+1: d=%d, e=%d \n",d,e); lcount=lcount+1; } if ((pflag==0)&&(qflag==0)) { printf("warning: both flags set \n"); fprintf(Outfp,"warning: both flags set \n"); } } if (dflag!=xflag) { error[1]=8; printf("error: d=%d, e=%d, flags=%d %d \n",d,e,dflag,xflag); goto bskip; } } else { goto askip; } } else { T[0]=0; T[1]=0; T[2]=0; T[3]=1; pflag=1; for (i=0; i<m; i++) { l=save[i]; bigresx(0, (l-1)/p, 0, l, U, p); if ((U[0]!=0)||(U[1]!=1)) goto askip; if ((m>1)&&(i!=(m-1))) { if (((l-1)/ps)*ps==(l-1)) { pflag=0; if (l<minfac) minfac=l; } } newprod(T[1],T[2],T[3],T,l); } qflag=1; if (m>1) { l=save[m-1]; if (((l-1)/ps)*ps==(l-1)) qflag=0; } if ((T[0]!=W[0])||(T[1]!=W[1])||(T[2]!=W[2])||(T[3]!=W[3])) { error[0]=7; goto bskip; } if (out!=0) { if (n>outsiz) { error[0]=6; goto bskip; } output[n]=((int)(d) << 16) | (int)(e); n=n+1; } if (m>1) { count=count+1; tcount=tcount+m; printf("d=%d, e=%d, m=%d, f=%d %d %d %d %d %d \n",d,e,m,save[0],save[1],save[2],save[3],save[4], save[6]); fprintf(Outfp,"d=%d, e=%d, m=%d, f=%d %d %d %d %d %d \n",d,e,m,save[0],save[1],save[2],save[3],save[4], save[6]); if (pflag==0) { printf("small p^2*k+1: d=%d, e=%d \n",d,e); fprintf(Outfp,"small p^2*k+1: d=%d, e=%d \n",d,e); scount=scount+1; } if (qflag==0) { printf("large p^2*k+1: d=%d, e=%d \n",d,e); fprintf(Outfp,"large p^2*k+1: d=%d, e=%d \n",d,e); lcount=lcount+1; } if ((pflag==0)&&(qflag==0)) { printf("warning: both flags set \n"); fprintf(Outfp,"warning: both flags set \n"); } } if (dflag!=xflag) { error[1]=8; printf("error: d=%d, e=%d, flags=%d %d \n",d,e,dflag,xflag); goto bskip; } } askip:dummy(d,e,6); } } bskip: if (out!=0) output[n]=0xffffffff; fprintf(Outfp," error0=%d error1=%d \n",error[0],error[1]); fprintf(Outfp," count=%d \n",count); printf(" count=%d \n",count); if ((n!=0)&&(out!=0)) { for (i=0; i<n-1; i++) fprintf(Outfp," %#10x \n",output[i]); } if (error[1]!=0) printf(" error=%d \n",error[1]); printf("small=%d, large=%d, total=%d, minimum=%d \n",scount,lcount,tcount,minfac); fprintf(Outfp,"small=%d, large=%d, total=%d, minimum=%d \n",scount,lcount,tcount,minfac); fclose(Outfp); return(0); }