/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/27/06 (dkc) */ /* */ /* This C program determines if a, p*b, and a+b are pth powers w.r.t. */ /* (a**p+b**p)/(a+b). p**2 must divide a, b, a-b, or a+b. Whether b, a-b, */ /* and a+b are pth powers modulo p**2 when p**2 divides a is determined. */ /* */ /* Note: The least-residues modulo p**2 table ("residue") is dependent on */ /* p. Modify the look-up table accordingly. */ /* */ /* If b, a-b, or a+b is not a pth power modulo p**2 when p**2 divides a, */ /* then an error is indicated ("error[1]" is set to a non-zero value). If */ /* p and b are pth powers w.r.t. (a**p+b**p)/(a+b) and a-b is not a pth */ /* power w.r.t. (a**p+b**p)/(a+b), then an error is indicated. If a-b is a */ /* pth power w.r.t. (a**p+b**p)/(a+b) and p or b is not a pth power w.r.t. */ /* (a**p+b**p)/(a+b), then an error is indicated. */ /* */ /* Note: Prime [(a^p+b^p)/(a+b)] (or [(a^p+b^p)/(a+b)] with small prime */ /* factors) are usually not checked. */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table12.h" unsigned int lmbd(unsigned int mode, unsigned int a); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void bigbigd(unsigned int *a, unsigned int *b); void differ(unsigned int *a, unsigned int *b); void dummy(unsigned int a, unsigned int b, unsigned int c); void bigbigs(unsigned int *addend, unsigned int *augend); void bigbigq(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f, unsigned int g); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); void quotient(unsigned int *a, unsigned int *b, unsigned int c); void newprod(unsigned int a, unsigned int b, unsigned int c, unsigned *d, unsigned int e); int main () { // // Note: The maximum "dbeg" value for p=3 is about 2^32. // The maximum "dbeg" value for p=5 is about 2^20. // The maximum "dbeg" value for p=7 is about 2^14. // The maximum "dbeg" value for p=11 is about 2^9. // unsigned int p=3; // input prime unsigned int dbeg=180000; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=803; unsigned int sumdif=1; // select [(a**p+b**p)/(a+b)] if "sumdif" is non-zero // or [(a**p-b**p)/(a-b)] otherwise unsigned int correct=0; // There is a small probability that (a**p+b**p)/(a+b) is not // completely factored if "correct" is not set to 1. unsigned int residue[2]={1,8}; // p=3 //unsigned int residue[4]={1,7,18,24}; // p=5 //unsigned int residue[6]={1,18,19,30,31,48}; // p=7 //unsigned int residue[10]={1,3,9,27,40,81,94,112,118,120}; // p=11 extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int output[]; extern unsigned int error[]; extern unsigned int tmpsav; extern unsigned int count; unsigned int pcount; unsigned int qcount; unsigned int maxsiz=100000; unsigned int tsize=1228; unsigned int tmpsiz; unsigned int outsiz=499; unsigned int save[16]; // solutions array unsigned int savsiz=15; // size of solutions array minus one unsigned int d,e,a,b,temp; unsigned int i,j,k,l,m; unsigned int flag,tflag,aflag,bflag,limit; unsigned int S[4],T[4],U[4],V[4],W[4],X[4],Y[4],Z[4]; unsigned short rem; unsigned int ps,iters,wrap; unsigned int n=0; double sqrt2=1.4142135; unsigned int histom[16],histop[16]; FILE *Outfp; Outfp = fopen("out38b.dat","w"); iters=0; for (i=0; i<16; i++) { histom[i]=0; histop[i]=0; } /*********************************/ /* extend prime look-up table */ /*********************************/ tmpsiz=0; for (i=0; i<tsize; i++) { j = (int)(table[i]); if (((j-1)/p)*p==(j-1)) { tmptab[tmpsiz] = j; tmpsiz=tmpsiz+1; } } for (d=9975; d<(9971*9971); d++) { if (((d-1)/p)*p!=(d-1)) continue; if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(2.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; if (tmpsiz>=maxsiz) break; } } printf("size=%d, prime=%d \n",tmpsiz,tmptab[tmpsiz-1]); tmpsav=tmpsiz; limit=(tmptab[tmpsiz-1])>>16; limit=limit*limit; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ ps=p*p; error[1]=0; error[2]=0; error[3]=0; error[4]=0; error[5]=0; count=0; pcount=0; qcount=0; wrap=0; for (d=dbeg; d>=dend; d--) { if (p>5) { if (wrap>8) { printf("d=%d \n",d); wrap=0; } else wrap=wrap+1; } for (e=d-1; e>0; e--) { // if (e!=stop) continue; /******************************************/ /* check if p^2 divides a, b, a+b, or a-b */ /******************************************/ if ((d/ps)*ps==d) goto dskip; if ((e/ps)*ps==e) goto dskip; if (((d-e)/ps)*ps==(d-e)) goto dskip; if (((d+e)/ps)*ps!=(d+e)) continue; /******************************************/ /* check for common factors of d and e */ /******************************************/ dskip:if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /***************************************/ /* check for Furtwangler conditions */ /***************************************/ tflag=1; if ((d/p)*p!=d) { flag=0; rem=d-(d/ps)*ps; for (l=0; l<p-1; l++) { if (rem==residue[l]) flag=1; } if (flag==0) tflag=0; } if ((e/p)*p!=e) { flag=0; rem=e-(e/ps)*ps; for (l=0; l<p-1; l++) { if (rem==residue[l]) flag=1; } if (flag==0) tflag=0; } if ((((d-e)/p)*p!=(d-e))&&((d+e)/p)*p!=(d+e)) { flag=0; rem=(d-e)-((d-e)/ps)*ps; for (l=0; l<p-1; l++) { if (rem==residue[l]) flag=1; } if (flag==0) tflag=0; flag=0; rem=(d+e)-((d+e)/ps)*ps; for (l=0; l<p-1; l++) { if (rem==residue[l]) flag=1; } if (flag==0) tflag=0; } /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ for (i=0; i<16; i++) save[i]=0; Y[0]=0; Y[1]=0; Y[2]=0; Y[3]=d; for (i=0; i<p-1; i++) newprod(Y[1],Y[2],Y[3],Y,d); Z[0]=0; Z[1]=0; Z[2]=0; Z[3]=e; for (i=0; i<p-1; i++) newprod(Z[1],Z[2],Z[3],Z,e); if (sumdif==1) { bigbigs(Y, Z); temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } else { bigbigd(Y, Z); temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } S[0]=Y[0]; S[1]=Y[1]; S[2]=Y[2]; S[3]=Y[3]; W[0]=S[0]; W[1]=S[1]; W[2]=S[2]; W[3]=S[3]; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]!=0) { printf("S too big \n"); goto zskip; } if (S[1]!=0) l=96-lmbd(1, S[1]); else { if (S[2]!=0) l=64-lmbd(1, S[2]); else l=32-lmbd(1, S[3]); } j=l-(l/2)*2; l=l/2; if (l>28) { flag=1; k=tmpsiz-1; goto ajump; } l=1<<l; if (j==1) l=(int)(((double)(l))*sqrt2); l=l+1; flag=0; if (l>tmptab[tmpsiz-1]) { flag=1; k=tmpsiz-1; } else { k=0; for (i=0; i<tmpsiz; i++) { if (tmptab[i] < l) k=i; else break; } } ajump:m=0; for (i=0; i<=k; i++) { l = tmptab[i]; bigbigq(S[0],S[1],S[2],S[3],T,0,l); V[0]=T[0]; V[1]=T[1]; V[2]=T[2]; V[3]=T[3]; if (T[0]!=0) { printf("multiplier too large \n"); goto zskip; } newprod(T[1],T[2],T[3],X,l); if ((S[0]!=X[0])||(S[1]!=X[1])||(S[2]!=X[2])||(S[3]!=X[3])) continue; aloop: S[0]=V[0]; S[1]=V[1]; S[2]=V[2]; S[3]=V[3]; save[m]=l; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } bigbigq(S[0],S[1],S[2],S[3],T,0,l); V[0]=T[0]; V[1]=T[1]; V[2]=T[2]; V[3]=T[3]; newprod(T[1],T[2],T[3],X,l); if ((S[0]==X[0])&&(S[1]==X[1])&&(S[2]=X[2])&&(S[3]==X[3])) goto aloop; } /***********************************************/ /* output prime factors satisfying criterion */ /***********************************************/ if ((S[0]!=0)||(S[1]!=0)||((S[2]&0xc0000000)!=0)) goto askip; if (m==0) goto askip; S[0]=S[2]; S[1]=S[3]; if ((S[0]!=0) || (S[1]!=1)) { if ((flag==1) && (correct==1)) { if (S[0]==0) j = (32 - lmbd(1, S[1])); else j = (64 - lmbd(1, S[0])); k=j-(j/2)*2; j=j/2; j = 1 << j; if (k==1) j=(int)(((double)(j))*sqrt2); for (i=tmptab[tmpsiz-1]; i<j; i+=2*p) { quotient(S, T, i); bigprod(T[0], T[1], i, X); if ((X[1]==S[0]) && (X[2]==S[1])) { bigresx(0, (i-1)/p, 0, i, U, d); if ((U[0]!=0)||(U[1]!=1)) goto askip; if (T[0]<=limit) { // largest prime in table is 0x126f5f S[0]=T[0]; // for p=7 S[1]=T[1]; save[m]=i; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } goto cskip; } else { error[0]=4; goto bskip; } } } } cskip: T[0]=0; T[1]=1; differ(S, T); quotient(T, T, p); aflag=1; bflag=1; bigresx(T[0], T[1], S[0], S[1], U, d); if ((U[0]==0)&&(U[1]==1)) { bigresx(T[0], T[1], S[0], S[1], U, p*e); if ((U[0]!=0)||(U[1]!=1)) goto askip; if (sumdif!=0) bigresx(T[0], T[1], S[0], S[1], U, d+e); else bigresx(T[0], T[1], S[0], S[1], U, d-e); if ((U[0]!=0)||(U[1]!=1)) goto askip; if (sumdif!=0) bigresx(T[0], T[1], S[0], S[1], U, d-e); else bigresx(T[0], T[1], S[0], S[1], U, d+e); if ((U[0]!=0)||(U[1]!=1)) aflag=0; bigresx(T[0], T[1], S[0], S[1], U, e); if ((U[0]!=0)||(U[1]!=1)) bflag=0; for (i=0; i<m; i++) { l=save[i]; bigresx(0, (l-1)/p, 0, l, U, d); if ((U[0]!=0)||(U[1]!=1)) goto askip; bigresx(0, (l-1)/p, 0, l, U, p*e); if ((U[0]!=0)||(U[1]!=1)) goto askip; if (sumdif!=0) bigresx(0, (l-1)/p, 0, l, U, d+e); else bigresx(0, (l-1)/p, 0, l, U, d-e); if ((U[0]!=0)||(U[1]!=1)) goto askip; if (sumdif!=0) bigresx(0, (l-1)/p, 0, l, U, d-e); else bigresx(0, (l-1)/p, 0, l, U, d+e); if ((U[0]!=0)||(U[1]!=1)) aflag=0; bigresx(0, (l-1)/p, 0, l, U, e); if ((U[0]!=0)||(U[1]!=1)) bflag=0; } if (aflag!=bflag) { error[1]=11; error[2]=d; error[3]=e; printf("aflag=%d, bflag=%d \n",aflag,bflag); goto bskip; } histom[m+1]=histom[m+1]+1; if ((m==1)&&(S[1]==save[0])) histop[2]=histop[2]+1; if ((m==2)&&(S[1]==save[0])&&(S[1]==save[1])) histop[3]=histop[3]+1; if ((m==3)&&(S[1]==save[0])&&(S[1]==save[1])&&(S[1]==save[2])) histop[4]=histop[4]+1; if (((m>0)&&(p!=3))||((m>1)&&(p==3))) { printf("d=%d, e=%d, m=%d, flag=%d, f=%d, %d, %d, %d, %d, %d %#010x %#010x \n",d,e,m+1,aflag,save[0],save[1],save[2],save[3],save[4],save[5],S[0],S[1]); if (iters<5000) { fprintf(Outfp,"d=%d, e=%d, m=%d, flag=%d, f=%d, %d, %d, %d, %d, %d %#010x %#010x \n",d,e,m+1,aflag,save[0],save[1],save[2],save[3],save[4],save[5],S[0],S[1]); iters=iters+1; } } T[0]=0; T[1]=0; T[2]=S[0]; T[3]=S[1]; for (i=0; i<m; i++) { l=save[i]; newprod(T[1],T[2],T[3],X,l); T[0]=X[0]; T[1]=X[1]; T[2]=X[2]; T[3]=X[3]; } if ((T[0]!=W[0])||(T[1]!=W[1])||(T[2]!=W[2])||(T[3]!=W[3])) { error[0]=7; printf("error: incorrect product \n"); goto bskip; } if (tflag==0) { error[1]=7; goto bskip; } } else { goto askip; } } else { aflag=1; bflag=1; for (i=0; i<m; i++) { l=save[i]; bigresx(0, (l-1)/p, 0, l, U, d); if ((U[0]!=0)||(U[1]!=1)) goto askip; bigresx(0, (l-1)/p, 0, l, U, p*e); if ((U[0]!=0)||(U[1]!=1)) goto askip; if (sumdif!=0) bigresx(0, (l-1)/p, 0, l, U, d+e); else bigresx(0, (l-1)/p, 0, l, U, d-e); if ((U[0]!=0)||(U[1]!=1)) goto askip; if (sumdif!=0) bigresx(0, (l-1)/p, 0, l, U, d-e); else bigresx(0, (l-1)/p, 0, l, U, d+e); if ((U[0]!=0)||(U[1]!=1)) aflag=0; bigresx(0, (l-1)/p, 0, l, U, e); if ((U[0]!=0)||(U[1]!=1)) bflag=0; } if (aflag!=bflag) { error[1]=11; error[2]=d; error[3]=e; printf("aflag=%d, bflag=%d \n",aflag,bflag); goto bskip; } histom[m]=histom[m]+1; if ((m==2)&&(save[0]==save[1])) histop[2]=histop[2]+1; if ((m==3)&&(save[0]==save[1])&&(save[0]==save[2])) histop[3]=histop[3]+1; if ((m==4)&&(save[0]==save[1])&&(save[0]==save[2])&&(save[0]==save[3])) histop[4]=histop[4]+1; if (((m>1)&&(p!=3))||((m>2)&&(p==3))) { printf("d=%d, e=%d, m=%d, flag=%d, f=%d, %d, %d, %d, %d, %d \n",d,e,m,aflag,save[0],save[1],save[2],save[3],save[4],save[5]); if (iters<2000) { fprintf(Outfp,"d=%d, e=%d, m=%d, flag=%d, f=%d, %d, %d, %d, %d, %d \n",d,e,m,aflag,save[0],save[1],save[2],save[3],save[4],save[5]); iters=iters+1; } } S[0]=0; S[1]=0; S[2]=0; S[3]=1; for (i=0; i<m; i++) { l=save[i]; newprod(S[1],S[2],S[3],X,l); S[0]=X[0]; S[1]=X[1]; S[2]=X[2]; S[3]=X[3]; } if ((S[0]!=W[0])||(S[1]!=W[1])||(S[2]!=W[2])||(S[3]!=W[3])) { error[0]=7; printf("error: incorrect product \n"); goto bskip; } if (tflag==0) { error[1]=7; goto bskip; } } askip:dummy(d,e,6); } } bskip: printf("\n"); fprintf(Outfp,"\n"); fprintf(Outfp," error0=%d error1=%d count=%d asave=%d bsave=%d \n",error[0], error[1],error[2],error[3],error[4]); if (error[1]!=0) printf(" error=%d \n",error[1]); printf("\n"); fprintf(Outfp,"\n"); for (i=0; i<16; i++) fprintf(Outfp,"i=%d h=%d, %d, \n",i,histom[i],histop[i]); zskip: return(0); }