/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) (when [(a**p+b**p)/(a+b)] is a pth power) */ /* 11/03/06 (dkc) */ /* */ /* Program determines if a, b, a-b, a+b, pa, pb, p(a-b), p(a+b), p**2*a, */ /* p**2*b, p**2*(a-b), p**2*(a+b), 2, p, 2p, or p/2 are pth powers modulo */ /* prime factors of [(a**p+b**p)/(a+b)]. Use "table3b" (same as "table3a") */ /* for a<=1000000. Use "table4b" (same as "table4a" except for the range */ /* of a) for 1000000<a<=2000000. Use "table6b" (same as "table6a") for */ /* 2000000<a<=2500000. Use "table7b" (same as "table7a") for 2500000<a<= */ /* 3000000. Modify "insize" accordingly. */ /* */ /* Note: [(a**p+b**p)/(a+b)] can have only three distinct prime factors. */ /* */ /* The output is "a, b, (code0<<16)|code1, code2<<16, (("and" of code0, */ /* code1, and code2)<<16)|(((flag0<<2)|(flag1<<1)|flag2)<<4)|code". "code" */ /* is set to 0, 1, 2, or 3 if p divides a, b, a-b, or a+b respectively. */ /* "flag0" is set to 1 if the distinct prime factor of [(a**p+b**p)/(a+b)] */ /* is of form p**2*k+1, or 0 otherwise. "flag1" and "flag2" are similarly */ /* set. The corresponding bit in "code0" is set when p/2, 2p, 2, p, a, b, */ /* a-b, a+b, pa, pb, p(a-b), p(a+b), p**2*a, p**2*b, p**2*(a-b), p**2*(a+b) */ /* is a pth power modulo a distinct prime factor of [(a**p+b**p)/(a+b)]. */ /* Simiarly, corresponding bits are set in "code1" and "code2". The three */ /* distinct prime factors of [(a**p+b**p)/(a+b)] are also output. */ /* */ /* Proposition (32) can be verified by examining the "code" when "psflag" */ /* is set to 1. (The "code" should also be examined when "mixed" types of */ /* factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /* Proposition (33) can be verified by examining the "code" when "psflag" */ /* is set to 0 and "split" is set to 0. (The "code" should also be examined*/ /* when "mixed" types of factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /* Proposition (35) can be verified by examining the "code" when "psflag" */ /* is set to 0 and "split" is set to 0. (The "code" should also be examined*/ /* when "mixed" types of factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /* Proposition (34) can be verified by examining the "code" when "psflag" */ /* is set to 0 and "split" is set to 1. (The "code" should also be examined*/ /* when "mixed" types of factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /* Note: Not enough data has been collected for [(a**p+b**p)/(a+b)] to */ /* have three distinct prime factors of the form p**2*k+1. */ /* */ /*****************************************************************************/ #include <stdio.h> #include <math.h> #include "table3b.h" void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); void bigbigs(unsigned int *a, unsigned int *b); void bigbigd(unsigned int *a, unsigned int *b); void bigbigq(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f, unsigned int g); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); int main () { unsigned int psflag=2; // if set to 1, factors must be of the form p**2*k+1 // if set to 0, factors must not be form p**2*k+1 // otherwise, factors can be of either form unsigned int split=2; // if set to 0, don't allow 2 and p to "split" // if set to 1, only allow "split" 2 and p // otherwise, allow both unsigned int p=3; // input prime extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int input[]; extern unsigned int output[]; extern unsigned int tmpsav; extern unsigned int error[]; unsigned int c,ps; unsigned int maxsiz=15000; unsigned int tsize=1228; unsigned int tmpsiz; unsigned int insiz=1038; // table7b //unsigned int insiz=1068; // table6b //unsigned int insiz=2534; // table4b //unsigned int insiz=4284; // table3b unsigned int outsiz=3500*7; unsigned int d,e,temp,sumdif; unsigned int i,j,k,l,m,oldk,oldoldk; unsigned int flag,tflag,uflag,iters; unsigned int aflag,bflag,cflag,dflag,limit; int pflag,oflag; unsigned int S[2],T[2],U[2],V[2],X[3],Y[4],Z[4],Up[2]; unsigned int n=0; FILE *Outfp; Outfp = fopen("out32c.dat","w"); ps=p*p; /*********************************/ /* extend prime look-up table */ /*********************************/ tmpsiz=0; for (i=0; i<tsize; i++) { j = (int)(table[i]); if (((j-1)/p)*p==(j-1)) { tmptab[tmpsiz] = j; tmpsiz=tmpsiz+1; } } for (d=10001; d<10000000; d++) { if (((d-1)/p)*p!=(d-1)) continue; if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(2.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; if (tmpsiz>=maxsiz) break; } } printf("size=%d, prime=%d \n",tmpsiz,tmptab[tmpsiz-1]); limit=(tmptab[tmpsiz-1])>>16; limit=limit*limit; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ pflag=0; error[0]=0; // clear error array error[1]=0; error[2]=0; for (j=0; j<insiz; j++) { zloop:if (pflag<2) { d=input[3*j]; e=input[3*j+1]; c=input[3*j+2]; sumdif=1; } else { d=input[3*(j-1)+1]; e=input[3*j+1]; c=input[3*j+2]; sumdif=0; } if (c!=3) goto askip; if ((d/p)*p==d) { dflag=0; if (split==0) { if ((d/2)*2!=d) goto askip; } if (split==1) { if ((d/2)*2==d) goto askip; } } if ((e/p)*p==e) { dflag=1; if (split==0) { if ((e/2)*2!=e) goto askip; } if (split==1) { if ((e/2)*2==e) goto askip; } } if (((d+e)/p)*p==(d+e)) { if (sumdif==1) dflag=3; else dflag=2; if (split==0) { if (((d+e)/2)*2!=(d+e)) goto askip; } if (split==1) { if (((d+e)/2)*2==(d+e)) goto askip; } } if (((d-e)/p)*p==(d-e)) { if (sumdif==1) dflag=2; else dflag=3; if (split==0) { if (((d-e)/2)*2!=(d-e)) goto askip; } if (split==1) { if (((d-e)/2)*2==(d-e)) goto askip; } } /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ Y[0] = 0; Y[1] = 0; Y[2] = 0; Y[3] = d; for (i=0; i<p-1; i++) { bigprod(Y[2], Y[3], d, X); Y[1]=X[0]; Y[2]=X[1]; Y[3]=X[2]; } Z[0] = 0; Z[1] = 0; Z[2] = 0; Z[3] = e; for (i=0; i<p-1; i++) { bigprod(Z[2], Z[3], e, X); Z[1]=X[0]; Z[2]=X[1]; Z[3]=X[2]; } if (sumdif!=0) bigbigs(Y, Z); else bigbigd(Y, Z); if (sumdif!=0) { temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; } else { temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; } bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); S[0]=Y[2]; S[1]=Y[3]; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ iters=0; for (i=0; i<tmpsiz; i++) { m=0; k = tmptab[i]; quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; if (psflag==1) { if (((k-1)/ps)*ps!=(k-1)) goto askip; } if (psflag==0) { if (((k-1)/ps)*ps==(k-1)) goto askip; } flag=0; bigresx(0, (k-1)/p, 0, k, U, d); if ((U[0]==0)&&(U[1]==1)) flag=flag+2048; bigresx(0, (k-1)/p, 0, k, U, e); if ((U[0]==0)&&(U[1]==1)) flag=flag+1024; bigresx(0, (k-1)/p, 0, k, U, d-e); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+512; else flag=flag+256; } bigresx(0, (k-1)/p, 0, k, U, d+e); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+256; else flag=flag+512; } bigresx(0, (k-1)/p, 0, k, U, p*d); if ((U[0]==0)&&(U[1]==1)) flag=flag+128; bigresx(0, (k-1)/p, 0, k, U, p*e); if ((U[0]==0)&&(U[1]==1)) flag=flag+64; bigresx(0, (k-1)/p, 0, k, U, p*(d-e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+32; else flag=flag+16; } bigresx(0, (k-1)/p, 0, k, U, p*(d+e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+16; else flag=flag+32; } bigresx(0, (k-1)/p, 0, k, U, p*p*d); if ((U[0]==0)&&(U[1]==1)) flag=flag+8; bigresx(0, (k-1)/p, 0, k, U, p*p*e); if ((U[0]==0)&&(U[1]==1)) flag=flag+4; bigresx(0, (k-1)/p, 0, k, U, p*p*(d-e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+2; else flag=flag+1; } bigresx(0, (k-1)/p, 0, k, U, p*p*(d+e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+1; else flag=flag+2; } bigresx(0, (k-1)/p, 0, k, U, p); Up[0]=U[0]; Up[1]=U[1]; if ((U[0]==0)&&(U[1]==1)) flag=flag+4096; bigresx(0, (k-1)/p, 0, k, U, 2); if ((U[0]==Up[0])&&(U[1]==Up[1])) flag=flag+32768; if ((U[0]==0)&&(U[1]==1)) flag=flag+8192; bigresx(0, (k-1)/p, 0, k, U, 2*p); if ((U[0]==0)&&(U[1]==1)) flag=flag+16384; aloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; if ((m/3)*3!=m) { error[0]=1; goto bskip; } if (((k-1)/ps)*ps==(k-1)) aflag=1; else aflag=0; iters=iters+1; if (iters==3) break; uflag=tflag; tflag=flag; cflag=bflag; bflag=aflag; oldoldk=oldk; oldk=k; } if ((S[0]!=0)||(S[1]!=1)) { error[0]=2; goto bskip; } aflag=(aflag<<2)|(bflag<<1)|cflag; oflag=uflag&tflag&flag; flag=(flag<<16)|tflag; /***********************************************/ /* output prime factors satisfying criterion */ /***********************************************/ if (n+6>outsiz) { error[0]=6; goto cskip; } output[n]=d; output[n+1]=e; output[n+2]=flag; output[n+3]=(uflag<<16); output[n+4]=(oflag<<16)|(aflag<<4)|dflag; output[n+5]=(k<<16)|oldk; output[n+6]=oldoldk; n=n+7; askip:if (pflag==2) pflag=-1; pflag+=1; if (pflag==2) goto zloop; } goto cskip; bskip: error[1]=d; error[2]=e; cskip: output[n]=0xffffffff; fprintf(Outfp," error=%d \n",error[0]); fprintf(Outfp," count=%d \n",(n+1)/7); for (i=0; i<(n+1)/7; i++) fprintf(Outfp," %#10x %#10x %#10x %#10x %#10x %#10x %#6x \n",output[7*i],output[7*i+1], output[7*i+2],output[7*i+3],output[7*i+4],output[7*i+5],output[7*i+6]); fclose(Outfp); return(0); }