/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) (when [(a**p+b**p)/(a+b)] is a pth power) */ /* 11/03/06 (dkc) */ /* */ /* Program determines if a, b, a-b, a+b, pa, pb, p(a-b), p(a+b), p**2*a, */ /* p**2*b, p**2*(a-b), p**2*(a+b), 2, p, 2p, or p/2 are pth powers modulo */ /* prime factors of [(a**p+b**p)/(a+b)]. Use "table3b" (same as "table3a") */ /* for a<=1000000. Use "table4b" (same as "table4a" except for the range */ /* of a) for 1000000<a<=2000000. Use "table6b" (same as "table6a") for */ /* 2000000<a<=2500000. Use "table7b" (same as "table7a") for 2500000<a<= */ /* 3000000. Modify "insize" accordingly. */ /* */ /* Note: [(a**p+b**p)/(a+b)] can have only one distinct prime factor. */ /* */ /* The output is "a, b, code, k". The corresponding bit in "code" is set */ /* when p/2, 2*p, 2, p, a, b, a-b, a+b, pa, pb, p(a-b), p(a+b), p**2*a, */ /* p**2*b, p**2*(a-b), or p**2*(a+b) is a pth power modulo a prime factor */ /* of [(a**p+b**p)/(a+b)]. "k" is the distinct prime factor of [(a^p+b^p)/ */ /* (a+b)]. */ /* */ /* Additional output is "a, b, m" where "m" is the number of prime factors */ /* of [(a**p+b**p)/(a+b)] when p is a pth power w.r.t. [(a**p+b**p)/(a+b)] */ /* and m is greater than 3. More output is "a, b, m" when p is a pth */ /* power w.r.t. [(a**p+b**p)/(a+b)] and p**3 does not divide a, b, or a-b */ /* and p**4 does not divide a+b (the count should be zero when "split" is */ /* set to 0). More output is "a, b, m" when p is not a pth power w.r.t. */ /* and p**3 divides a, b, or a-b or p**4 divides a+b ("m" should be 9). */ /* The rest of Proposition (29) can be verified by examining the output */ /* "a, b, m" when p is a pth power w.r.t. [(a**p+b**p)/(a+b)] and p**3 */ /* does not divide a, b, or a-b and p**4 does not divide a+b; p**3 should */ /* divide a', b', or a'-b' or p**4 should divide a'+b' for some */ /* representation [((a')**p+(b')**p)/(a'+b')] of T**p. */ /* */ /* Proposition (32) can be verified by examining the "code" when "psflag" */ /* is set to 1. (The "code" should also be examined when "mixed" types of */ /* factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /* Proposition (33) can be verified by examining the "code" when "psflag" */ /* is set to 0 and "split" is set to 0. (The "code" should also be examined*/ /* when "mixed" types of factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /* Proposition (35) can be verified by examining the "code" when "psflag" */ /* is set to 0 and "split" is set to 0. (The "code" should also be examined*/ /* when "mixed" types of factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /* Proposition (34) can be verified by examining the "code" when "psflag" */ /* is set to 0 and "split" is set to 1. (The "code" should also be examined*/ /* when "mixed" types of factors of [(a**p+b**p)/(a+b)] are allowed.) */ /* */ /*****************************************************************************/ #include <stdio.h> #include <math.h> #include "table7b.h" void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); void bigbigs(unsigned int *a, unsigned int *b); void bigbigd(unsigned int *a, unsigned int *b); void bigbigq(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f, unsigned int g); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); int main () { unsigned int psflag=2; // if set to 1, factors must be of the form p**2*k+1 // if set to 0, factors not of the form p**2*k+1 // otherwise, factors can be of both forms unsigned int split=2; // if set to 0, don't allow 2 and p to "split" // if set to 1, only allow "split" 2 and p // otherwise, allow both unsigned int out=0; // if set, only output when p is a pth power w.r.t. // (a^p+b^p)/(a+b) unsigned int p=3; // input prime extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int input[]; extern unsigned int output[]; extern unsigned int qsave[]; extern unsigned int rsave[]; extern unsigned int ssave[]; extern unsigned int tmpsav; extern unsigned int count; extern unsigned int qcount; extern unsigned int rcount; extern unsigned int scount; extern unsigned int error[]; unsigned int c,ps,pc,pf; unsigned int maxsiz=15000; unsigned int tsize=1228; unsigned int tmpsiz; unsigned int insiz=1038; // table7b //unsigned int insiz=1068; // table6b //unsigned int insiz=2534; // table4b //unsigned int insiz=4284; // table3b unsigned int outsiz=5000*3; unsigned int d,e,temp; unsigned int i,j,k,l,m; unsigned int flag,sumdif,limit; int pflag,qflag,rflag,tflag,uflag,t; unsigned int S[2],T[2],U[2],V[2],X[3],Y[4],Z[4],Up[2]; unsigned int n=0; FILE *Outfp; Outfp = fopen("out32a.dat","w"); ps=p*p; pc=ps*p; pf=pc*p; /*********************************/ /* extend prime look-up table */ /*********************************/ tmpsiz=0; for (i=0; i<tsize; i++) { j = (int)(table[i]); if (((j-1)/p)*p==(j-1)) { tmptab[tmpsiz] = j; tmpsiz=tmpsiz+1; } } for (d=10001; d<10000000; d++) { if (((d-1)/p)*p!=(d-1)) continue; if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(2.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; if (tmpsiz>=maxsiz) break; } } printf("size=%d, prime=%d \n",tmpsiz,tmptab[tmpsiz-1]); limit=(tmptab[tmpsiz-1])>>16; limit=limit*limit; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ count=0; pflag=0; error[0]=0; // clear error array error[1]=0; error[2]=0; error[3]=0; error[4]=0; qcount=0; rcount=0; scount=0; for (j=0; j<insiz; j++) { zloop: if (pflag<2) { d=input[3*j]; e=input[3*j+1]; c=input[3*j+2]; sumdif=1; } else { d=input[3*(j-1)+1]; e=input[3*j+1]; c=input[3*j+2]; sumdif=0; } if (c!=1) goto askip; // // check for "split" 2 and p // uflag=2; if ((d/2)*2==d) { if (sumdif!=0) { if (((d+e)/p)*p==(d+e)) { uflag=0; t=(int)(d-2*e); if (t<0) t=-t; if (((unsigned int)t/pc)*pc!=(unsigned int)t) error[1]=88; if (((2*d-e)/ps)*ps==(2*d-e)) error[1]=89; } } else { if (((d-e)/p)*p==(d-e)) { uflag=0; if (((d+2*e)/pc)*pc!=(d+2*e)) error[1]=88; if (((2*d+e)/ps)*ps==(2*d+e)) error[1]=89; } } } if ((e/2)*2==e) { if (sumdif!=0) { if (((d+e)/p)*p==(d+e)) { uflag=1; if (((2*d-e)/pc)*pc!=(2*d-e)) error[1]=88; if (((d-2*e)/ps)*ps==(d-2*e)) error[1]=89; } } else { if (((d-e)/p)*p==(d-e)) { uflag=1; if (((2*d+e)/pc)*pc!=(2*d+e)) error[1]=88; if (((d+2*e)/ps)*ps==(d+2*e)) error[1]=89; } } } if ((split==0)&&(uflag!=2)) goto askip; if ((split==1)&&(uflag==2)) goto askip; // // check if p divides a, b, a-b, or a+b // if ((d/p)*p==d) tflag=0; if ((e/p)*p==e) tflag=1; if (((d+e)/p)*p==(d+e)) { if (sumdif!=0) { tflag=3; if ((uflag==2)&&((2*d-e)/ps)*ps==(2*d-e)) error[1]=87; t=(int)(d-2*e); if (t<0) t=-t; if ((uflag==2)&&((unsigned int)t/ps)*ps==(unsigned int)t) error[1]=87; } else tflag=2; } if (((d-e)/p)*p==(d-e)) { if (sumdif!=0) tflag=2; else { tflag=3; if ((uflag==2)&&((2*d+e)/ps)*ps==(2*d+e)) error[1]=87; if ((uflag==2)&&((d+2*e)/ps)*ps==(d+2*e)) error[1]=87; } } // // check if p**3 divides a, b, or a-b or p**4 divides a+b // qflag=0; if ((d/pc)*pc==d) qflag=1; if ((e/pc)*pc==e) qflag=1; if (sumdif==1) { if (((d+e)/pf)*pf==(d+e)) qflag=1; if (((d-e)/pc)*pc==(d-e)) qflag=1; } if (sumdif==0) { if (((d-e)/pf)*pf==(d-e)) qflag=1; if (((d+e)/pc)*pc==(d+e)) qflag=1; } /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ Y[0] = 0; Y[1] = 0; Y[2] = 0; Y[3] = d; for (i=0; i<p-1; i++) { bigprod(Y[2], Y[3], d, X); Y[1]=X[0]; Y[2]=X[1]; Y[3]=X[2]; } Z[0] = 0; Z[1] = 0; Z[2] = 0; Z[3] = e; for (i=0; i<p-1; i++) { bigprod(Z[2], Z[3], e, X); Z[1]=X[0]; Z[2]=X[1]; Z[3]=X[2]; } if (sumdif!=0) bigbigs(Y, Z); else bigbigd(Y,Z); if (sumdif!=0) { temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; } else { temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; } bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); S[0]=Y[2]; S[1]=Y[3]; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ for (i=0; i<tmpsiz; i++) { m=0; k = tmptab[i]; quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; aloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; if ((m/3)*3!=m) { error[0]=9; goto bskip; } else break; } if ((m/3)*3!=m) { error[0]=9; goto bskip; } if ((S[0]!=0)||(S[1]!=1)) { error[0]=9; goto bskip; } if (psflag==1) { if (((k-1)/ps)*ps!=(k-1)) goto askip; } if (psflag==0) { if (((k-1)/ps)*ps==(k-1)) goto askip; } rflag=0; if (((k-1)/ps)*ps==(k-1)) rflag=1; flag=0; bigresx(0, (k-1)/p, 0, k, U, d); if ((U[0]==0)&&(U[1]==1)) flag=flag+2048; bigresx(0, (k-1)/p, 0, k, U, e); if ((U[0]==0)&&(U[1]==1)) flag=flag+1024; bigresx(0, (k-1)/p, 0, k, U, d-e); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+512; else flag=flag+256; } bigresx(0, (k-1)/p, 0, k, U, d+e); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+256; else flag=flag+512; } bigresx(0, (k-1)/p, 0, k, U, p*d); if ((U[0]==0)&&(U[1]==1)) flag=flag+128; bigresx(0, (k-1)/p, 0, k, U, p*e); if ((U[0]==0)&&(U[1]==1)) flag=flag+64; bigresx(0, (k-1)/p, 0, k, U, p*(d-e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+32; else flag=flag+16; } bigresx(0, (k-1)/p, 0, k, U, p*(d+e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+16; else flag=flag+32; } bigresx(0, (k-1)/p, 0, k, U, p*p*d); if ((U[0]==0)&&(U[1]==1)) flag=flag+8; bigresx(0, (k-1)/p, 0, k, U, p*p*e); if ((U[0]==0)&&(U[1]==1)) flag=flag+4; bigresx(0, (k-1)/p, 0, k, U, p*p*(d-e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+2; else flag=flag+1; } bigresx(0, (k-1)/p, 0, k, U, p*p*(d+e)); if ((U[0]==0)&&(U[1]==1)) { if (pflag!=2) flag=flag+1; else flag=flag+2; } bigresx(0, (k-1)/p, 0, k, U, p); Up[0]=U[0]; Up[1]=U[1]; if ((U[0]==0)&&(U[1]==1)) { if (rflag!=0) { if (flag!=0xfff) error[1]=10; } else { if (uflag==2) { if (tflag==0) { if (flag!=0x888) error[1]=11; } if (tflag==1) { if (flag!=0x444) error[1]=11; } if (tflag>1) { if (flag!=0x333) error[1]=11; } } } flag=flag+4096; if (m>3) { if (rcount<500) { rsave[3*rcount]=d; rsave[3*rcount+1]=e; rsave[3*rcount+2]=m; } rcount+=1; } if (qflag==0) { if (scount<500) { ssave[4*scount]=d; ssave[4*scount+1]=e; ssave[4*scount+2]=k; ssave[4*scount+3]=m; } scount+=1; } } else { if (rflag!=0) { if (tflag<3) { if (flag!=0x10e) error[1]=10; } else { if (flag!=0xe10) error[1]=10; } } else { if (uflag==2) { if (tflag==0) { if ((flag!=0x429)&&(flag!=0x258)) error[1]=12; } if (tflag==1) { if ((flag!=0x825)&&(flag!=0x294)) error[1]=12; } if (tflag==2) { if ((flag!=0x942)&&(flag!=0x582)) error[1]=12; } if (tflag==3) { if ((flag!=0x294)&&(flag!=0x258)) error[1]=12; } } else { if (uflag==0) { if ((flag!=0x942)&&(flag!=0x825)) error[1]=13; } if (uflag==1) { if ((flag!=0x582)&&(flag!=0x429)) error[1]=13; } } } if (qflag==1) { if (qcount<500) { qsave[3*qcount]=d; qsave[3*qcount+1]=e; qsave[3*qcount+2]=m; } qcount+=1; } } bigresx(0, (k-1)/p, 0, k, U, 2); if ((U[0]==Up[0])&&(U[1]==Up[1])) flag=flag+32768; if ((U[0]==0)&&(U[1]==1)) flag=flag+8192; bigresx(0, (k-1)/p, 0, k, U, 2*p); if ((U[0]==0)&&(U[1]==1)) flag=flag+16384; /***********************************************/ /* output prime factors satisfying criterion */ /***********************************************/ if (n+2>outsiz) { error[0]=6; goto bskip; } if ((out==0)||((flag&0x1000)!=0)) { output[n]=d; output[n+1]=e; output[n+2]=(flag<<16)|k; n=n+3; count+=1; } askip:if (pflag==2) pflag=-1; pflag+=1; if (pflag==2) goto zloop; } goto cskip; bskip: error[1]=d; error[2]=e; cskip: output[n]=0xffffffff; fprintf(Outfp," error0=%d error1=%d asave=%d bsave=%d csave=%d \n", error[0],error[1],error[2],error[3],error[4]); fprintf(Outfp," count=%d \n",(n+1)/3); for (i=0; i<(n+1)/3; i++) fprintf(Outfp," %#10x, %#10x, %#10x, %#10x, \n",output[3*i],output[3*i+1], output[3*i+2]>>16,output[3*i+2]&0xffff); fprintf(Outfp,"\n"); fprintf(Outfp," p is a pth power w.r.t. [(a**p+b**p)/(a+b)] \n"); fprintf(Outfp," [(a**p+b**p)/(a+b)] has more than 3 prime factors \n"); if (rcount<500) n=rcount; else n=500; fprintf(Outfp," count=%d \n",n); for (i=0; i<n; i++) { fprintf(Outfp," %#10x %#10x %#10x \n",rsave[3*i],rsave[3*i+1], rsave[3*i+2]); } fprintf(Outfp,"\n"); fprintf(Outfp," p is a pth power w.r.t. [(a**p+b**p)/(a+b)] \n"); fprintf(Outfp," p**3 does not divide a, b, or a-b, and p**4 does not divide a+b \n"); if (scount<500) n=scount; else n=500; fprintf(Outfp," count=%d \n",n); for (i=0; i<n; i++) { fprintf(Outfp," %#10x, %#10x, %#10x, %#10x, \n",ssave[4*i],ssave[4*i+1], ssave[4*i+2],ssave[4*i+3]); } fprintf(Outfp,"\n"); fprintf(Outfp," p is not a pth power w.r.t. [(a**p+b**p)/(a+b)] \n"); fprintf(Outfp," p**3 divides a, b, or a-b, or p**4 divides a+b \n"); if (qcount<500) n=qcount; else n=500; fprintf(Outfp," count=%d \n",n); for (i=0; i<n; i++) { fprintf(Outfp," %#10x %#10x %#10x \n",qsave[3*i],qsave[3*i+1], qsave[3*i+2]); } fclose(Outfp); if (error[1]!=0) printf(" errors=%#010x %d \n",error[0],error[1]); return(0); }