/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/23/06 (dkc) */ /* */ /* This C program finds a and b such that (a**p + b**p)/(a + b) is a cube */ /* or p times a cube. [(a**p+b**p)/(a+b)] must have two distinct prime */ /* factors. p is set to 3. The prime factors of [(a**p+b**p)/(a+b)] must */ /* be of the form p**2*k+1. */ /* */ /* The output is "a, b, split". If 2p does not divide a, b, a-b, or a+b, */ /* then "split" is set to 1, otherwise "split" is set to 0. */ /* */ /* If a is even, p does not divide a, and (a/2)**(p-1) is not congruent to */ /* 1 modulus p**3, then an error is indicated ("error[1]" is set to 9). b */ /* is treated similarly. */ /* */ /* If a is odd, p divides a+b, and a**(p-1) is not congruent to 1 modulus */ /* p**3, then an error is indicated ("error[1]" is set to 9). b and a-b */ /* are treated similarly. */ /* */ /* If p**3 divides a, b, a-b or p**4 divides a+b, 2 does not divide a, and */ /* a**(p-1) is not congruent to 1 modulus p**3, then an error is indicated */ /* ("error[1]" is set to 8). b and a-b are treated similarly. If p**3 */ /* divides a, b, or a-b or p**4 divides a+b, 2 does not divide a+b, p does */ /* not divide a+b, and (a+b)**(p-1) is not congruent to 1 modulus p**3, */ /* then an error is indicated. If p**3 divides a, b, or a-b or p**4 */ /* divides a+b, 2 does not divide a+b, p divides a+b, and [(a+b)/p]**(p-1) */ /* is not congruent to 1 modulus p**3, then an error is indicated. */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table0b.h" unsigned int lmbd(unsigned int mode, unsigned int a); void dummy(unsigned int a, unsigned int b, unsigned int c); void sum(unsigned int *addend, unsigned int *augend); void differ(unsigned int *minuend, unsigned int *subtrahend); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); int main () { unsigned int p=3; // input prime unsigned int dbeg=10000; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=4160; extern unsigned int table3[]; extern unsigned int output[]; extern unsigned int error[]; unsigned int t3size=848; unsigned int outsiz=1999; unsigned int n=0; unsigned int d,e,a,b,temp,dsum; unsigned int i,j,k,l,m; unsigned int flag,split,qflag,ps,pc,pf; unsigned int S[2],T[2],V[2],X[3]; double recip7,croot2,croot4; FILE *Outfp; Outfp = fopen("out28b.dat","w"); recip7=1.0/7.0; croot2=1.259921/7.0; croot4=1.587401/7.0; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ ps=p*p; pc=ps*p; pf=pc*p; error[0]=0; // clear error array error[1]=0; for (d=dbeg; d>=dend; d--) { for (e=d-1; e>0; e--) { dummy(d,e,0); // if (e!=stop) continue; /*******************************/ /* check for common factors */ /*******************************/ if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /*******************************/ /* check if 2 and p are split */ /********************************/ split=1; if ((d/2)*2==d) if ((d/p)*p==d) split=0; if ((e/2)*2==e) if ((e/p)*p==e) split=0; if (((d-e)/2)*2==(d-e)) if (((d-e)/p)*p==(d-e)) split=0; if (((d+e)/2)*2==(d+e)) if (((d+e)/p)*p==(d+e)) split=0; /**********************************************************/ /* check if p**3 divides a, b, or a-b or p**4 divides a+b */ /**********************************************************/ qflag=0; if ((d/pc)*pc==d) qflag=1; if ((e/pc)*pc==e) qflag=1; if (((d+e)/pf)*pf==(d+e)) qflag=1; if (((d-e)/pc)*pc==(d-e)) qflag=1; /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ dsum=d+e; S[0]=0; S[1]=d; for (i=0; i<p-1; i++) { bigprod(S[0], S[1], d, X); S[0]=X[1]; S[1]=X[2]; } T[0]=0; T[1]=e; for (i=0; i<p-1; i++) { bigprod(T[0], T[1], e, X); T[0]=X[1]; T[1]=X[2]; } sum(S, T); quotient(T, S, dsum); /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]==0) l = 32 - lmbd(1, S[1]); else l = 64 - lmbd(1, S[0]); j=l-(l/3)*3; l=l/3; l = 1 << l; if (j==0) l=(int)(((double)(l))*recip7); if (j==1) l=(int)(((double)(l))*croot2); if (j==2) l=(int)(((double)(l))*croot4); l=l+1; if (l>table3[t3size-1]) { error[0]=5; goto bskip; } else { k=0; for (i=0; i<t3size; i++) { if (table3[i] < l) k=i; else break; } } j=0; for (i=0; i<=k; i++) { m=0; l = table3[i]; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; aloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; if ((m/3)*3!=m) goto askip; else { j=i+1; break; } } if ((m/3)*3!=m) continue; if ((S[0]==X[1]) && (S[1]==X[2])) continue; if ((S[0]==0)&&(S[1]==1)) continue; m=0; for (i=j; i<=k; i++) { m=0; l = table3[i]; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; bloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto bloop; if ((m/3)*3!=m) goto askip; else break; } if ((m/3)*3!=m) continue; if ((S[0]!=0) || (S[1]!=1)) continue; // // p**3 // if (qflag!=0) { if ((d/2)*2!=d) { flag=0; if (((d-1)/pc)*pc==(d-1)) flag=1; if (((d+1)/pc)*pc==(d+1)) flag=1; if (flag==0) error[1]=8; } if ((e/2)*2!=e) { flag=0; if (((e-1)/pc)*pc==(e-1)) flag=1; if (((e+1)/pc)*pc==(e+1)) flag=1; if (flag==0) error[1]=8; } if (((d-e)/2)*2!=(d-e)) { flag=0; if ((((d-e)-1)/pc)*pc==((d-e)-1)) flag=1; if ((((d-e)+1)/pc)*pc==((d-e)+1)) flag=1; if (flag==0) error[1]=8; } if (((d+e)/2)*2!=(d+e)) { if (((d+e)/p)*p==(d+e)) { flag=0; if (((((d+e)/p)-1)/pc)*pc==(((d+e)/p)-1)) flag=1; if (((((d+e)/p)+1)/pc)*pc==(((d+e)/p)+1)) flag=1; if (flag==0) error[1]=8; } else { flag=0; if ((((d+e)-1)/pc)*pc==((d+e)-1)) flag=1; if ((((d+e)+1)/pc)*pc==((d+e)+1)) flag=1; if (flag==0) error[1]=8; } } } // // "split" tests // if ((d/2)*2==d) { if ((d/p)*p!=d) { flag=0; if ((((d/2)-1)/pc)*pc==((d/2)-1)) flag=1; if ((((d/2)+1)/pc)*pc==((d/2)+1)) flag=1; if (flag==0) error[1]=9; } } else { if (((d+e)/p)*p==(d+e)) { flag=0; if (((d-1)/pc)*pc==(d-1)) flag=1; if (((d+1)/pc)*pc==(d+1)) flag=1; if (flag==0) error[1]=9; } } if ((e/2)*2==e) { if ((e/p)*p!=e) { flag=0; if ((((e/2)-1)/pc)*pc==((e/2)-1)) flag=1; if ((((e/2)+1)/pc)*pc==((e/2)+1)) flag=1; if (flag==0) error[1]=9; } } else { if (((d+e)/p)*p==(d+e)) { flag=0; if (((d-1)/pc)*pc==(d-1)) flag=1; if (((d+1)/pc)*pc==(d+1)) flag=1; if (flag==0) error[1]=9; } } if (((d-e)/2)*2!=(d-e)) { if (((d+e)/p)*p==(d+e)) { flag=0; if ((((d-e)-1)/pc)*pc==((d-e)-1)) flag=1; if ((((d-e)+1)/pc)*pc==((d-e)+1)) flag=1; if (flag==0) error[1]=9; } } if (n+2>outsiz) { error[0]=6; goto bskip; } output[n]=d; output[n+1]=e; output[n+2]=split; n=n+3; askip:flag=0; } } bskip: output[n]=-1; fprintf(Outfp," error0=%d error1=%d \n",error[0],error[1]); fprintf(Outfp," count=%d \n",(n+1)/3); for (i=0; i<(n+1)/3; i++) fprintf(Outfp," %#10x, %#10x, %#10x, \n",output[3*i],output[3*i+1], output[3*i+2]); fclose(Outfp); if (error[1]!=0) printf(" error \n"); return(0); }