/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/27/06 (dkc) */ /* */ /* This C program finds a and b such that (a**p + b**p)/(a + b) is a cube */ /* or p times a cube. The prime factors of [(a**p+b**p)/(a+b)] must be of */ /* the form p**2*k+1. p is set to 3. Only a and b where (a**p+b**p)/(a+b) */ /* has one distinct prime factor are output. */ /* */ /* The output is "a, b, split". If 2p does not divide a, b, a-b, or a+b, */ /* then "split" is set to 1. If a is even, p divides a, and p**2 does not */ /* divide a, then an error is indicated ("error[1]" is set to 7). b and */ /* a-b are treated similarly. If a+b is even, p divides a+b, and p**3 */ /* does not divide a+b, then an error is indicated ("error[1]" is set to */ /* 7). If a+b is odd, p divides a+b, and p**2 divides a+b, then an error */ /* is indicated ("error[1]" is set to 7). */ /* */ /* If a is even, p does not divide a, and (a/2)**(p-1) is not congruent to */ /* 1 modulo p**3, then an error is indicated ("error[3]" is set to 9). */ /* b is treated similarly. */ /* */ /* If a is odd, p divides a+b, and a**(p-1) is not congruent to 1 modulo */ /* p**3, then an error is indicated ("error[3]" is set to 9). b and a-b */ /* are treated similarly. */ /* */ /* If p**3 divides a, b, a-b or p**4 divides a+b, 2 does not divide a, and */ /* a**(p-1) is not congruent to 1 modulo p**3, then an error is indicated */ /* ("error[2]" is set to 8). b and a-b are treated similarly. If p**3 */ /* divides a, b, or a-b or p**4 divides a+b, 2 does not divide a+b, p does */ /* not divide a+b, and (a+b)**(p-1) is not congruent to 1 modulo p**3, */ /* then an error is indicated. If p**3 divides a, b, or a-b or p**4 */ /* divides a+b, 2 does not divide a+b, p divides a+b, and [(a+b)/p]**(p-1) */ /* is not congruent to 1 modulo p**3, then an error is indicated. */ /* */ /* Proposition (28) can be verified by examining the output and determining */ /* if p**3 divides a', b', or a'-b' or p**4 divides a'+b' for some */ /* representation [((a')**p+(b')**p)/(a'+b')] of T**p. Use "prop28c.c" */ /* to group the representations of T**p and factor a, b, a-b, and a+b (the */ /* output of this program is input to "prop28c.c"). */ /* */ /* Note: If p**4 divides a+b and [(a**p+b**p)/(a+b)] has only one distinct */ /* factor, 2 does not divide a already implies that a**(p-1) is congruent */ /* to 1 modulo p**3 (similarly for b and a-b). If p**3 divides a, b, or */ /* a-b and [(a**p+b**p)/(a+b)] has only one distinct prime factor, then */ /* p**3 divides a, b, or a-b for the other two representations (although */ /* this is probably not true for p>3). The stipulation that p**3 divide */ /* a', b', or a'-b' or p**4 divide a'+b' is then really only useful when */ /* p**4 divides a'+b' (which is enough). If p*T**p has two distinct prime */ /* factors, then [(a+b)/p]**(p-1) is not congruent to 1 modulo p**3 when */ /* p**4 divides a'+b' for the other group of three representations. */ /* */ /* Note: If 2 does not divide a, the condition that p**3 divide a, b, or */ /* a-b or p**4 divide a+b is needed in case 2*p divides b or a-b */ /* (similarly for b and a-b). */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table0b.h" unsigned int lmbd(unsigned int mode, unsigned int a); void dummy(unsigned int a, unsigned int b, unsigned int c); void sum(unsigned int *addend, unsigned int *augend); void differ(unsigned int *minuend, unsigned int *subtrahend); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); int main () { unsigned int p=3; // input prime unsigned int dbeg=10000; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=0x2e831; unsigned int sumdif=1; // select [(a**p+b**p)/(a+b)] if "sumdif" is non- // zero, or [(a**p-b**p)/(a-b)] otherwise extern unsigned int table3[]; extern unsigned int output[]; extern unsigned int error[]; unsigned int t3size=848; unsigned int outsiz=1999; unsigned int n=0; unsigned int d,e,a,b,temp; unsigned int i,j,k,l,lp,m,wrap; unsigned int ps,pc,pf,qflag,flag,split; unsigned int S[2],T[2],V[2],X[3]; double croot2,croot4,halfcr4; FILE *Outfp; Outfp = fopen("out28a.dat","w"); croot2=1.259921; croot4=1.587401; halfcr4=croot4*((double)(0.5)); /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ ps=p*p; pc=ps*p; pf=pc*p; error[0]=0; // clear error array error[1]=0; error[2]=0; error[3]=0; error[4]=0; wrap=1; for (d=dbeg; d>=dend; d--) { if (wrap>99) { printf("a=%d \n",d); wrap=1; } else wrap=wrap+1; for (e=d-1; e>0; e--) { dummy(d,e,2); // if (e!=stop) continue; /*******************************/ /* check for common factors */ /*******************************/ if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /*******************************/ /* check if 2 and p are split */ /********************************/ split=1; if ((d/2)*2==d) if ((d/p)*p==d) split=0; if ((e/2)*2==e) if ((e/p)*p==e) split=0; if (((d-e)/2)*2==(d-e)) if (((d-e)/p)*p==(d-e)) split=0; if (((d+e)/2)*2==(d+e)) if (((d+e)/p)*p==(d+e)) split=0; /**********************************************************/ /* check if p**3 divides a, b, or a-b or p**4 divides a+b */ /**********************************************************/ qflag=0; if ((d/pc)*pc==d) qflag=1; if ((e/pc)*pc==e) qflag=1; if (sumdif==1) { if (((d+e)/pf)*pf==(d+e)) qflag=1; if (((d-e)/pc)*pc==(d-e)) qflag=1; } if (sumdif==0) { if (((d-e)/pf)*pf==(d-e)) qflag=1; if (((d+e)/pc)*pc==(d+e)) qflag=1; } /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ S[0]=0; S[1]=d; for (i=0; i<p-1; i++) { bigprod(S[0], S[1], d, X); S[0]=X[1]; S[1]=X[2]; } T[0]=0; T[1]=e; for (i=0; i<p-1; i++) { bigprod(T[0], T[1], e, X); T[0]=X[1]; T[1]=X[2]; } if (sumdif==1) { sum(S, T); temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; quotient(T, S, temp); } else { differ(S, T); temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; quotient(T, S, temp); } /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]==0) l = 32 - lmbd(1, S[1]); else l = 64 - lmbd(1, S[0]); j=l-(l/3)*3; l=l/3; l = 1 << l; if (j==0) lp=(int)(((double)(l))*halfcr4); if (j==1) { lp=l; l=(int)(((double)(l))*croot2); } if (j==2){ lp=(int)(((double)(l))*croot2); l=(int)(((double)(l))*croot4); } lp=lp-1; l=l+1; if (l>table3[t3size-1]) { error[0]=5; goto bskip; } else { j=0; for (i=0; i<t3size; i++) { if (table3[i] < lp) j=i; else break; } k=j; for (i=j; i<t3size; i++) { if (table3[i] < l) k=i; else break; } } for (i=j; i<=k; i++) { m=0; l = table3[i]; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; aloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; if ((m/3)*3!=m) goto askip; else break; } if ((m/3)*3!=m) continue; if ((S[0]!=0) || (S[1]!=1)) continue; // // p**2 // if ((d/2)*2==d) { if ((d/p)*p==d) { if ((d/ps)*ps!=d) { error[1]=7; goto bskip; } } } if ((e/2)*2==e) { if ((e/p)*p==e) { if ((e/ps)*ps!=e) { error[1]=7; goto bskip; } } } if (sumdif!=0) { if (((d-e)/2)*2==(d-e)) { if (((d-e)/p)*p==(d-e)) { if (((d-e)/ps)*ps!=(d-e)) { error[1]=7; goto bskip; } } } } else { if (((d+e)/2)*2==(d+e)) { if (((d+e)/p)*p==(d+e)) { if (((d+e)/ps)*ps!=(d+e)) { error[1]=7; goto bskip; } } } } if (sumdif!=0) { if (((d+e)/2)*2==(d+e)) { if (((d+e)/p)*p==(d+e)) { if (((d+e)/pc)*pc!=(d+e)) { error[1]=7; goto bskip; } } } if (((d+e)/2)*2!=(d+e)) { if (((d+e)/p)*p==(d+e)) { if (((d+e)/ps)*ps==(d+e)) { error[1]=7; goto bskip; } } } } else { if (((d-e)/2)*2==(d-e)) { if (((d-e)/p)*p==(d-e)) { if (((d-e)/pc)*pc!=(d-e)) { error[1]=7; goto bskip; } } } if (((d-e)/2)*2!=(d-e)) { if (((d-e)/p)*p==(d-e)) { if (((d-e)/ps)*ps==(d-e)) { error[1]=7; goto bskip; } } } } // // p**3 // if (qflag!=0) { if ((d/2)*2!=d) { flag=0; if (((d-1)/pc)*pc==(d-1)) flag=1; if (((d+1)/pc)*pc==(d+1)) flag=1; if (flag==0) error[2]=8; } if ((e/2)*2!=e) { flag=0; if (((e-1)/pc)*pc==(e-1)) flag=1; if (((e+1)/pc)*pc==(e+1)) flag=1; if (flag==0) error[2]=8; } if (sumdif!=0) { if (((d-e)/2)*2!=(d-e)) { flag=0; if ((((d-e)-1)/pc)*pc==((d-e)-1)) flag=1; if ((((d-e)+1)/pc)*pc==((d-e)+1)) flag=1; if (flag==0) error[2]=8; } if (((d+e)/2)*2!=(d+e)) { if (((d+e)/p)*p==(d+e)) { flag=0; if (((((d+e)/p)-1)/pc)*pc==(((d+e)/p)-1)) flag=1; if (((((d+e)/p)+1)/pc)*pc==(((d+e)/p)+1)) flag=1; if (flag==0) error[2]=8; } else { flag=0; if ((((d+e)-1)/pc)*pc==((d+e)-1)) flag=1; if ((((d+e)+1)/pc)*pc==((d+e)+1)) flag=1; if (flag==0) error[2]=8; } } } else { if (((d+e)/2)*2!=(d+e)) { flag=0; if ((((d+e)-1)/pc)*pc==((d+e)-1)) flag=1; if ((((d+e)+1)/pc)*pc==((d+e)+1)) flag=1; if (flag==0) error[2]=8; } if (((d-e)/2)*2!=(d-e)) { if (((d-e)/p)*p==(d-e)) { flag=0; if (((((d-e)/p)-1)/pc)*pc==(((d-e)/p)-1)) flag=1; if (((((d-e)/p)+1)/pc)*pc==(((d-e)/p)+1)) flag=1; if (flag==0) error[2]=8; } else { flag=0; if ((((d-e)-1)/pc)*pc==((d-e)-1)) flag=1; if ((((d-e)+1)/pc)*pc==((d-e)+1)) flag=1; if (flag==0) error[2]=8; } } } } // // "split" tests // if ((d/2)*2==d) { if ((d/p)*p!=d) { flag=0; if ((((d/2)-1)/pc)*pc==((d/2)-1)) flag=1; if ((((d/2)+1)/pc)*pc==((d/2)+1)) flag=1; if (flag==0) error[3]=9; } } else { if (sumdif==1) { if (((d+e)/p)*p==(d+e)) { flag=0; if (((d-1)/pc)*pc==(d-1)) flag=1; if (((d+1)/pc)*pc==(d+1)) flag=1; if (flag==0) error[3]=9; } } else { if (((d-e)/p)*p==(d-e)) { flag=0; if (((d-1)/pc)*pc==(d-1)) flag=1; if (((d+1)/pc)*pc==(d+1)) flag=1; if (flag==0) error[3]=9; } } } if ((e/2)*2==e) { if ((e/p)*p!=e) { flag=0; if ((((e/2)-1)/pc)*pc==((e/2)-1)) flag=1; if ((((e/2)+1)/pc)*pc==((e/2)+1)) flag=1; if (flag==0) error[3]=9; } } else { if (sumdif==1) { if (((d+e)/p)*p==(d+e)) { flag=0; if (((e-1)/pc)*pc==(e-1)) flag=1; if (((e+1)/pc)*pc==(e+1)) flag=1; if (flag==0) error[3]=9; } } else { if (((d-e)/p)*p==(d-e)) { flag=0; if (((e-1)/pc)*pc==(e-1)) flag=1; if (((e+1)/pc)*pc==(e+1)) flag=1; if (flag==0) error[3]=9; } } } if (sumdif==1) { if (((d-e)/2)*2!=(d-e)) { if (((d+e)/p)*p==(d+e)) { flag=0; if ((((d-e)-1)/pc)*pc==((d-e)-1)) flag=1; if ((((d-e)+1)/pc)*pc==((d-e)+1)) flag=1; if (flag==0) error[3]=9; } } } else { if (((d+e)/2)*2!=(d+e)) { if (((d-e)/p)*p==(d-e)) { flag=0; if ((((d+e)-1)/pc)*pc==((d+e)-1)) flag=1; if ((((d+e)+1)/pc)*pc==((d+e)+1)) flag=1; if (flag==0) error[3]=9; } } } if (n+2>outsiz) { error[0]=6; goto bskip; } output[n]=d; output[n+1]=e; output[n+2]=l; output[n+3]=split; n=n+4; askip:temp=0; } } bskip: output[n]=0xffffffff; fprintf(Outfp," error0=%d error1=%d error2=%d error3=%d \n",error[0], error[1],error[2],error[3]); fprintf(Outfp," count=%d \n",(n+1)/4); for (i=0; i<(n+1)/4; i++) fprintf(Outfp," %#10x, %#10x, %#10x, %d, \n",output[4*i],output[4*i+1], output[4*i+2],output[4*i+3]); fclose(Outfp); if ((error[1]!=0)||(error[2]!=0)||(error[3]!=0)) printf(" error \n"); return(0); }