/*****************************************************************************/ /* */ /* FACTOR (a**p + b**p)/(a + b) */ /* 11/03/06 (dkc) */ /* */ /* This C program finds prime factors f of (a**p + b**p)/(a + b) where a */ /* and b are relatively prime integers and determines if q**((f-1)/p)=1 */ /* (mod f). All prime factors are output. A factor f must be duplicated. */ /* If p>3, whether p divides a when q divides a and q is a not a pth power */ /* modulo p**2 is determined (similarly for b). Whether p divides a-b or */ /* a+b when q divides a-b or a+b and q is not a pth power modulo p**2 is */ /* determined. */ /* */ /* The output is "a, b, [(a**p+b**p)/(a+b)] (two words), (n<<16)|code, */ /* factor1, factor1,...,factorn (possibly two words)" where "n" is the */ /* number of prime factors and "code" is set to p if p divides a+b, or */ /* 0 otherwise. If p does not divide a when q divides a, then an error */ /* is indicated ("error[1]" is set to a non-zero value). b is treated */ /* similarly. If p does not divide a-b or a+b when q divides a-b or a+b, */ /* then an error is indicated. */ /* */ /* Note: The user must ascertain that "base" is not a pth power modulo p^2. */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table12.h" void product(unsigned int *a, unsigned int m, unsigned int count); unsigned int lmbd(unsigned int mode, unsigned int a); void sum(unsigned int *a, unsigned int *b); void differ(unsigned int *a, unsigned int *b); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); void quotient(unsigned int *a, unsigned int *b, unsigned int c); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); int main () { // // Note: The maximum "dbeg" value for p=3 is about 1000000. // The maximum "dbeg" value for p=5 is about 5000. // The maximum "dbeg" value for p=7 is about 500. // The maximum "dbeg" value for p=11 is about 50. // unsigned int p=3; // input prime unsigned int dbeg=1000000; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=183; unsigned int sumdif=1; // select [(a**p+b**p)/(a+b)] if "sumdif" is non-zero // or [(a**p-b**p)/(a-b)] otherwise unsigned int base=12; // q value // 1, 8 are pth powers modulo p**2 for p=3 // 1, 7, 18, 24 are pth powers modulo p**2 for p=5 // 1, 18, 19, 30, 31, 48 are pth powers modulo p**2 for p=7 // 1, 3, 9, 27, 40, 81, 94, 112, 118, 120 are pth powers // modulo p**2 for p=11 extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int output[]; extern unsigned int error[]; extern unsigned int compos[]; extern unsigned int tmpsav; extern unsigned int count; extern unsigned int tcount; extern unsigned int ccount; extern unsigned int rflag; unsigned int maxsiz=15600; unsigned int tsize=1228; unsigned int tmpsiz; unsigned int outsiz=1999; unsigned int cossiz=99; unsigned int save[10]; // solutions array unsigned int savsiz=9; // size of solutions array minus one unsigned int d,e,a,b,temp; unsigned int i,j,k,l,m; unsigned int flag,dflag,bsave,limit; unsigned int S[2],T[2],U[2],V[2],W[2],X[3]; unsigned int n=0; FILE *Outfp; Outfp = fopen("out23b.dat","w"); /*********************************/ /* extend prime look-up table */ /*********************************/ error[0]=0; tmpsiz=0; for (i=0; i<tsize; i++) { j = (int)(table[i]); if (((j-1)/p)*p==(j-1)) { tmptab[tmpsiz] = j; tmpsiz=tmpsiz+1; } } for (d=2007; d<4000000; d++) { if (((d-1)/p)*p!=(d-1)) continue; if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(2.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; if (tmpsiz>=maxsiz) break; } } tmpsav=tmpsiz; limit=(tmptab[tmpsiz-1])>>16; limit=limit*limit; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ error[0]=0; // clear error array error[1]=0; error[2]=0; error[3]=0; error[4]=0; error[5]=0; error[6]=0; count=0; tcount=0; ccount=0; rflag=0; for (d=dbeg; d>=dend; d--) { for (e=d-1; e>0; e--) { // if (e!=stop) continue; if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; if((d==(d/11)*11)&&(e==(e/11)*11)) continue; if((d==(d/13)*13)&&(e==(e/13)*13)) continue; if((d==(d/17)*17)&&(e==(e/17)*17)) continue; if((d==(d/19)*19)&&(e==(e/19)*19)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /******************************************/ /* check if q divides d, e, d+e or d-e */ /******************************************/ bsave=0; if (p!=3) { if ((d/base)*base==d) { bsave=d; goto zskip; } if ((e/base)*base==e) { bsave=e; goto zskip; } } if (((d+e)/base)*base==(d+e)) goto zskip; if (((d-e)/base)*base!=(d-e)) continue; /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ zskip:tcount=tcount+1; dflag=0; S[0] = 0; S[1] = d; for (i=0; i<p-1; i++) { bigprod(S[0], S[1], d, X); S[0]=X[1]; S[1]=X[2]; } S[0]=X[1]; S[1]=X[2]; T[0] = 0; T[1] = e; for (i=0; i<p-1; i++) { bigprod(T[0], T[1], e, X); T[0]=X[1]; T[1]=X[2]; } T[0]=X[1]; T[1]=X[2]; if (sumdif==1) { sum(S, T); temp=d+e; if ((temp/p)*p==temp) temp=temp*p; quotient(T, S, temp); } else { differ(S, T); temp=d-e; if ((temp/p)*p==temp) temp=temp*p; quotient(T, S, temp); } W[0]=S[0]; W[1]=S[1]; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]==0) { l = (33 - lmbd(1, S[1]))/2; l = 1 << l; } else { l = (65 - lmbd(1, S[0]))/2; l = 1 << l; } k=0; if (l>tmptab[tmpsiz-1]) { flag=1; k=tmpsiz-1; } else { flag=0; for (i=0; i<tmpsiz; i++) { if (tmptab[i] < l) k=i; else break; } } l=k; m=0; for (i=0; i<=l; i++) { k = tmptab[i]; quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; if (base!=1) { bigresx(0, (k-1)/p, 0, k, U, base); if ((U[0]!=0)||(U[1]!=1)) goto askip; } aloop: S[0]=V[0]; S[1]=V[1]; save[m]=k; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } quotient(S, T, k); V[0]=T[0]; V[1]=T[1]; bigprod(T[0], T[1], k, X); if ((S[0]==X[1]) && (S[1]==X[2])) { dflag=1; goto aloop; } } /***********************************************/ /* output prime factors satisfying criterion */ /***********************************************/ if (dflag==0) goto askip; if ((S[0]!=0) || (S[1]!=1)) { if (flag==1) { if (S[0]==0) { j = (33 - lmbd(1, S[1]))/2; j = 1 << j; } else { j = (65 - lmbd(1, S[0]))/2; j = 1 << j; } for (i=tmptab[tmpsiz-1]; i<j; i+=2*p) { quotient(S, T, i); bigprod(T[0], T[1], i, X); if ((X[1]==S[0]) && (X[2]==S[1])) { if (base!=1) { bigresx(0, (i-1)/p, 0, i, U, base); if ((U[0]!=0)||(U[1]!=1)) goto askip; } if (T[0]<=limit) { // largest prime in table is 1195153 S[0]=T[0]; // for p=7 S[1]=T[1]; save[m]=i; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } goto cskip; } else { if (ccount+3>cossiz) { error[0]=4; goto bskip; } compos[ccount]= (d<<16) | e; compos[ccount+1] = S[0]; compos[ccount+2] = S[1]; compos[ccount+3] = i; ccount = ccount+4; goto askip; } } } } cskip: if (base!=1) { T[0]=0; T[1]=1; differ(S, T); quotient(T, T, p); bigresx(T[0], T[1], S[0], S[1], T, base); } else { T[0]=0; T[1]=1; } if ((T[0]==0)&&(T[1]==1)) { if (n+m+6>outsiz) { error[0]=6; goto bskip; } if (m>0) printf("d=%d, e=%d, m=%d \n",d,e,m+1); output[n]=d; output[n+1]=e; output[n+2]=W[0]; output[n+3]=W[1]; if (sumdif==1) { if (((d+e)/p)*p==(d+e)) k=p; else k=0; } else { if (((d-e)/p)*p==(d-e)) k=p; else k=0; } output[n+4]=((int)(m+1) << 16) | (int)(k); T[0]=S[0]; T[1]=S[1]; for (i=0; i<m; i++) { bigprod(T[0], T[1], save[i], X); T[0] = X[1]; T[1] = X[2]; output[n+i+5]=save[i]; } output[n+m+5]=S[0]; output[n+m+6]=S[1]; if ((T[0]!=W[0]) || (T[1]!=W[1])) { error[0]=7; goto bskip; } n=n+m+7; count=count+1; if (bsave!=0) { if ((bsave/p)*p!=bsave) { error[1]+=1; error[2]=d; error[3]=e; } } else { if ((((d+e)/p)*p!=(d+e))&&(((d-e)/p)*p!=(d-e))) { error[4]+=1; error[5]=d; error[6]=e; } } } else goto askip; } else { if (n+m+3>outsiz) { error[0]=6; goto bskip; } if (m>1) printf("d=%d, e=%d, m=%d \n",d,e,m); output[n]=d; output[n+1]=e; output[n+2]=W[0]; output[n+3]=W[1]; if (sumdif==1) { if (((d+e)/p)*p==(d+e)) k=p; else k=0; } else { if (((d-e)/p)*p==(d-e)) k=p; else k=0; } output[n+4]=((int)(m) << 16) | (int)(k); S[0]=0; S[1]=1; for (i=0; i<m; i++) { bigprod(S[0], S[1], save[i], X); S[0] = X[1]; S[1] = X[2]; output[n+i+5]=save[i]; } if ((S[0]!=W[0]) || (S[1]!=W[1])) { error[0]=7; goto bskip; } n=n+m+5; count=count+1; if (bsave!=0) { if ((bsave/p)*p!=bsave) { error[1]+=1; error[2]=d; error[3]=e; } } else { if ((((d+e)/p)*p!=(d+e))&&(((d-e)/p)*p!=(d-e))) { error[4]+=1; error[5]=d; error[6]=e; } } } askip:rflag=1; } } bskip: output[n]=-1; fprintf(Outfp," error0=%d error1=%d asave=%d bsave=%d \n",error[0],error[1], error[2],error[3]); fprintf(Outfp," error4=%d asave=%d bsave=%d \n",error[4],error[5], error[6]); fprintf(Outfp," count=%d \n",n); for (i=0; i<n; i++) fprintf(Outfp," %#10x \n",output[i]); fclose(Outfp); if ((error[1]!=0)||(error[4]!=0)) printf(" error \n"); return(0); }