/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/08/06 (dkc) */ /* */ /* This C program determines if q is a pth power with respect to */ /* (a**p + b**p)/(a+b). q must divide a, b, a+b or a-b. If p>3, whether */ /* p divides a when q divides a and q is not a pth power modulo p**2 */ /* is determined (simiarly for b). Whether p divides a-b or a+b when q */ /* divides a-b or a+b when q is not a pth power modulo p**2 is determined. */ /* q should be a prime. */ /* */ /* The output is "(a<<16)|b". If p does not divide a when q divides a, */ /* then an error is indicated ("error[1]" is set to a non-zero value). */ /* b is treated similarly. If p does not divide a-b or a+b when q divides */ /* a-b or a+b, then an error is indicated. */ /* */ /* Note: The user must ascertain that "base" is not a pth power modulo p^2. */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table11.h" unsigned int lmbd(unsigned int mode, unsigned int a); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void bigbigd(unsigned int *a, unsigned int *b); void differ(unsigned int *a, unsigned int *b); void dummy(unsigned int a, unsigned int b, unsigned int c); void bigbigs(unsigned int *addend, unsigned int *augend); void hugeprod(unsigned int a, unsigned int b, unsigned int c, unsigned d, unsigned int *e, unsigned int f); void bigbigq(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f, unsigned int g); void shift16(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); void quotient(unsigned int *a, unsigned int *b, unsigned int c); int main () { // // Note: The maximum "dbeg" value for p=3 is about 5000. // The maximum "dbeg" value for p=5 is about 1000. // The maximum "dbeg" value for p=7 is about 250. // The maximum "dbeg" value for p=11 is about 50. // unsigned int p=7; // input prime unsigned int dbeg=200; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=0x3c1; unsigned int base=29; // q value // 1, 8 are pth powers modulus p**2 for p=3 // 1, 7, 18, 24 are pth powers modulus p**2 for p=5 // 1, 18, 19, 30, 31, 48 are pth powers modulus p**2 for p=7 // 1, 3, 9, 27, 40, 81, 94, 112, 118, 120 are pth powers // modulus p**2 for p=11 unsigned int sumdif=1; // select [(a**p+b**p)/(a+b)] when "sumdif" is non- // zero, or [(a**p-b**p)/(a-b)] otherwise unsigned int correct=1; // There is a small probability that (a**p+b**p)/(a+b) // is not completely factored if "correct" is not set to 1. unsigned int out=1; // results copied to the output array when set extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int output[]; extern unsigned int error[]; extern unsigned int tmpsav; extern unsigned int count; extern unsigned int pcount; unsigned int maxsiz=15600; unsigned int tsize=303; unsigned int tmpsiz; unsigned int outsiz=1999; unsigned int save[16]; // solutions array unsigned int savsiz=15; // size of solutions array minus one unsigned int d,e,a,b,temp; unsigned int i,j,k,l,m; unsigned int flag,limit,bsave; unsigned int S[2],T[2],U[2],X[3],Y[4],Z[4]; unsigned int BT[4],BV[4],BW[4],BX[4]; unsigned int n=0; double sqrt2=1.4142135; FILE *Outfp; Outfp = fopen("out23a.dat","w"); /*********************************/ /* extend prime look-up table */ /*********************************/ error[0]=0; tmpsiz=0; for (i=0; i<tsize; i++) { j = (int)(table[i]); if (((j-1)/p)*p==(j-1)) { tmptab[tmpsiz] = j; tmpsiz=tmpsiz+1; } } for (d=2007; d<4000000; d++) { if (((d-1)/p)*p!=(d-1)) continue; if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(2.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; if (tmpsiz>=maxsiz) break; } } tmpsav=tmpsiz; limit=(tmptab[tmpsiz-1])>>16; limit=limit*limit; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ error[1]=0; error[2]=0; error[3]=0; error[4]=0; error[5]=0; error[6]=0; count=0; pcount=0; for (d=dbeg; d>=dend; d--) { for (e=d-1; e>0; e--) { // if (e!=stop) continue; /******************************************/ /* check for common factors of d and e */ /******************************************/ if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /******************************************/ /* check if q divides d, e, d+e or d-e */ /******************************************/ bsave=0; if (p!=3) { if ((d/base)*base==d) { bsave=d; goto zskip; } if ((e/base)*base==e) { bsave=e; goto zskip; } } if (((d+e)/base)*base==(d+e)) goto zskip; if (((d-e)/base)*base!=(d-e)) continue; /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ zskip:Y[0]=0; Y[1]=0; Y[2]=0; Y[3]=d; for (i=0; i<p-1; i++) hugeprod(Y[0], Y[1], Y[2], Y[3], Y, d); Z[0]=0; Z[1]=0; Z[2]=0; Z[3]=e; for (i=0; i<p-1; i++) hugeprod(Z[0], Z[1], Z[2], Z[3], Z, e); if (sumdif==1) { bigbigs(Y, Z); temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } else { bigbigd(Y, Z); temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); } BW[0]=Y[0]; BW[1]=Y[1]; BW[2]=Y[2]; BW[3]=Y[3]; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if ((Y[0]==0)&&(Y[1]==0)) { if (Y[2]==0) l = 32 - lmbd(1, Y[3]); else l = 64 - lmbd(1, Y[2]); j=l-(l/2)*2; l=l/2; l = 1 << l; if (j==1) l=(int)(((double)(l))*sqrt2); l=l+1; } else l=0x7fffffff; flag=0; if (l>tmptab[tmpsiz-1]) { flag=1; k=tmpsiz-1; } else { k=0; for (i=0; i<tmpsiz; i++) { if (tmptab[i] < l) k=i; else break; } } m=0; for (i=0; i<=k; i++) { l = tmptab[i]; bigbigq(Y[0], Y[1], Y[2], Y[3], BT, 0, l); BV[0]=BT[0]; BV[1]=BT[1]; BV[2]=BT[2]; BV[3]=BT[3]; if (l>65535) { hugeprod(BT[0], BT[1], BT[2], BT[3], BX, l>>16); shift16(BX[0], BX[1], BX[2], BX[3], BX); hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l&65535); bigbigs(BX, BT); } else hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l); if ((Y[0]!=BT[0])||(Y[1]!=BT[1])||(Y[2]!=BT[2])||(Y[3]!=BT[3])) continue; bigresx(0, (l-1)/p, 0, l, U, base); if ((U[0]!=0)||(U[1]!=1)) { goto askip; } aloop: Y[0]=BV[0]; Y[1]=BV[1]; Y[2]=BV[2]; Y[3]=BV[3]; save[m]=l; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } bigbigq(Y[0], Y[1], Y[2], Y[3], BT, 0, l); BV[0]=BT[0]; BV[1]=BT[1]; BV[2]=BT[2]; BV[3]=BT[3]; if (l>65535) { hugeprod(BT[0], BT[1], BT[2], BT[3], BX, l>>16); shift16(BX[0], BX[1], BX[2], BX[3], BX); hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l&65535); bigbigs(BX, BT); } else hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l); if ((Y[0]==BT[0])&&(Y[1]==BT[1])&&(Y[2]==BT[2])&&(Y[3]==BT[3])) goto aloop; } /***********************************************/ /* output prime factors satisfying criterion */ /***********************************************/ if ((Y[0]!=0)||(Y[1]!=0)) continue; if (Y[2]>0x3fffffff) continue; S[0]=Y[2]; S[1]=Y[3]; if ((S[0]!=0) || (S[1]!=1)) { if ((flag==1) && (correct==1)) { if (S[0]==0) j = (32 - lmbd(1, S[1])); else j = (64 - lmbd(1, S[0])); k=j-(j/2)*2; j=j/2; j = 1 << j; if (k==1) j=(int)(((double)(j))*sqrt2); for (i=tmptab[tmpsiz-1]; i<j; i+=2*p) { quotient(S, T, i); bigprod(T[0], T[1], i, X); if ((X[1]==S[0]) && (X[2]==S[1])) { bigresx(0, (i-1)/p, 0, i, U, base); if ((U[0]!=0)||(U[1]!=1)) { goto askip; } if (T[0]<=limit) { // largest prime in table is 0x126f5f S[0]=T[0]; // for p=7 S[1]=T[1]; save[m]=i; if (m < savsiz) m=m+1; else { error[0]=3; goto bskip; } goto cskip; } else { error[0]=4; goto bskip; } } } } cskip: T[0]=0; T[1]=1; differ(S, T); quotient(T, T, p); bigresx(T[0], T[1], S[0], S[1], U, base); if ((U[0]==0)&&(U[1]==1)) { if (n>outsiz) { error[0]=6; goto bskip; } if (m>0) printf("d=%d, e=%d, m=%d \n",d,e,m+1); output[n]=((int)(d) << 16) | (int)(e); BT[0]=0; BT[1]=0; BT[2]=S[0]; BT[3]=S[1]; for (i=0; i<m; i++) { l=save[i]; if (l>65535) { hugeprod(BT[0], BT[1], BT[2], BT[3], BX, l>>16); shift16(BX[0], BX[1], BX[2], BX[3], BX); hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l&65535); bigbigs(BX, BT); } else hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l); } if ((BT[0]!=BW[0])||(BT[1]!=BW[1])||(BT[2]!=BW[2])||(BT[3]!=BW[3])) { error[0]=7; goto bskip; } if (bsave!=0) { if ((bsave/p)*p!=bsave) { error[1]=12; error[2]=d; error[3]=e; goto bskip; } } else { if ((((d+e)/p)*p!=(d+e))&&(((d-e)/p)*p!=(d-e))) { error[1]=12; error[2]=d; error[3]=e; goto bskip; } } if (out!=0) { n=n+1; count=count+1; } else { if (m>0) { n=n+1; count=count+1; } } if (m>0) { error[2]=error[2]+1; if (out!=0) m=error[2]; else m=1; if (m<100) { error[2*m+3]=d; error[2*m+4]=e; } } } else { goto askip; } } else { if (n>outsiz) { error[0]=6; goto bskip; } if (m>1) printf("d=%d, e=%d, m=%d \n",d,e,m); output[n]=((int)(d) << 16) | (int)(e); BT[0]=0; BT[1]=0; BT[2]=0; BT[3]=1; for (i=0; i<m; i++) { l=save[i]; if (l>65535) { hugeprod(BT[0], BT[1], BT[2], BT[3], BX, l>>16); shift16(BX[0], BX[1], BX[2], BX[3], BX); hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l&65535); bigbigs(BX, BT); } else hugeprod(BT[0], BT[1], BT[2], BT[3], BT, l); } if ((BT[0]!=BW[0])||(BT[1]!=BW[1])||(BT[2]!=BW[2])||(BT[3]!=BW[3])) { error[0]=7; goto bskip; } if (bsave!=0) { if ((bsave/p)*p!=bsave) { error[1]=12; error[2]=d; error[3]=e; goto bskip; } } else { if ((((d+e)/p)*p!=(d+e))&&(((d-e)/p)*p!=(d-e))) { error[1]=12; error[2]=d; error[3]=e; goto bskip; } } if (out!=0) { n=n+1; count=count+1; } else { if (m>1) { n=n+1; count=count+1; } } if (m>1) { error[2]=error[2]+1; if (out!=0) m=error[2]; else m=1; if (m<100) { error[2*m+3]=d; error[2*m+4]=e; } } } askip:dummy(d,e,6); } } bskip: output[n]=0xffffffff; fprintf(Outfp," error0=%d error1=%d count=%d asave=%d bsave=%d \n",error[0], error[1],error[2],error[3],error[4]); fprintf(Outfp," count=%d \n",n-1); if (n!=0) { for (i=0; i<n-1; i++) fprintf(Outfp," %#10x \n",output[i]); } fclose(Outfp); if (error[1]!=0) printf(" error \n"); return(0); }