/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/03/06 (dkc) */ /* */ /* This C program finds a and b such that (a**p + b**p)/(a + b) is a */ /* fourth power of a prime or p times the fourth power of a prime. p */ /* is set to 3. */ /* */ /* The output is "a, b". */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table9.h" unsigned int lmbd(unsigned int mode, unsigned int a); void dummy(unsigned int a, unsigned int b, unsigned int c); void sum(unsigned int *addend, unsigned int *augend); void differ(unsigned int *minuend, unsigned int *subtrahend); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); int main () { unsigned int p=3; // input prime unsigned int dbeg=10000; // starting "a" value unsigned int dend=1; // ending "a" value //unsigned int stop=1; unsigned int sumdif=1; // select [(a**p+b**p)/(a+b)] if "sumdif" is non- // zero, or [(a**p-b**p)/(a-b)] otherwise extern unsigned short table[]; extern unsigned int tmptab[]; extern unsigned int output[]; extern unsigned int error[]; extern unsigned int count; extern unsigned int tmpsav; unsigned int tsize=172; unsigned int outsiz=1999; unsigned int n=0; unsigned int d,e,a,b,temp; unsigned int i,j,k,l,lp,m; unsigned int flag,tmpsiz; unsigned int S[2],T[2],V[2],X[3]; double fourth2,fourth4,fourth8,half8; FILE *Outfp; Outfp = fopen("out22b.dat","w"); fourth2=1.189207; fourth4=1.4142135; fourth8=1.6817928; half8=0.8408964; /*********************************/ /* extend prime look-up table */ /*********************************/ for (i=0; i<tsize; i++) tmptab[i] = (int)(table[i]); tmpsiz=tsize; for (d=1033; d<170000; d++) { if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; /************************************************/ /* look for prime factors using look-up table */ /************************************************/ l = (int)(100.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i] < l) k=i; else break; } } flag=1; l=k; for (i=0; i<=l; i++) { k = table[i]; if ((d/k)*k == d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz = tmpsiz + 1; } } tmpsav=tmpsiz; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ error[0]=0; // clear error array error[1]=0; error[2]=0; error[3]=0; count=0; for (d=dbeg; d>=dend; d--) { for (e=d-1; e>0; e--) { dummy(d,e,10); // if (e!=stop) continue; /*******************************/ /* check for common factors */ /*******************************/ if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ S[0]=0; S[1]=d; for (i=0; i<p-1; i++) { bigprod(S[0], S[1], d, X); S[0]=X[1]; S[1]=X[2]; } T[0]=0; T[1]=e; for (i=0; i<p-1; i++) { bigprod(T[0], T[1], e, X); T[0]=X[1]; T[1]=X[2]; } if (sumdif==1) { sum(S, T); temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; quotient(T, S, temp); } else { differ(S, T); temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; quotient(T, S, temp); } /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]==0) l = 32 - lmbd(1, S[1]); else l = 64 - lmbd(1, S[0]); j=l-(l/4)*4; l=l/4; l = 1 << l; if (j==0) lp=(int)(((double)(l))*half8); if (j==1) { lp=l; l=(int)(((double)(l))*fourth2); } if (j==2){ lp=(int)(((double)(l))*fourth2); l=(int)(((double)(l))*fourth4); } if (j==3){ lp=(int)(((double)(l))*fourth4); l=(int)(((double)(l))*fourth8); } lp=lp-1; l=l+1; if (l>tmptab[tmpsiz-1]) { error[0]=5; goto bskip; } else { j=0; for (i=0; i<tmpsiz; i++) { if (tmptab[i] < lp) j=i; else break; } k=j; for (i=j; i<tmpsiz; i++) { if (tmptab[i] < l) k=i; else break; } } for (i=j; i<=k; i++) { m=0; l = tmptab[i]; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; aloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; if (m!=4) goto askip; else break; } if (m!=4) continue; if ((S[0]!=0) || (S[1]!=1)) continue; if (n+1>outsiz) { error[0]=6; goto bskip; } output[n]=d; output[n+1]=e; n=n+2; count=count+1; askip:flag=0; } } bskip: output[n]=-1; fprintf(Outfp," error0=%d \n",error[0]); fprintf(Outfp," count=%d \n",(n+1)/2); for (i=0; i<(n+1)/2; i++) fprintf(Outfp," %#10x %#10x \n",output[2*i],output[2*i+1]); fclose(Outfp); return(0); }