/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/03/06 (dkc) */ /* */ /* This C program finds a and b such that (a**p + b**p)/(a + b) is a */ /* square or p times a square. p is set to 3. q must divide a, b, a+b, */ /* or a-b. Whether q is a pth power modulus the square root of */ /* [(a**p+b**p)/(a+b)] is determined. q should be a pth power modulus p**2.*/ /* */ /* The output is "a, b". If q is not a pth power modulus the square root */ /* of [(a**p+b**p)/(a+b)], then an error is indicated ("error[1]" is set */ /* to a non-zero value). */ /* */ /*****************************************************************************/ #include <math.h> #include <stdio.h> #include "table0a.h" #include "table92.h" unsigned int lmbd(unsigned int mode, unsigned int a); void dummy(unsigned int a, unsigned int b, unsigned int c); void sum(unsigned int *addend, unsigned int *augend); void differ(unsigned int *minuend, unsigned int *subtrahend); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); void bigresx(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f); int main () { unsigned int p=3; // input prime unsigned int base=17; // q value // 1, 8 are pth powers modulus p**2 for p=3 extern unsigned short table3[]; extern unsigned int input[]; extern unsigned int output[]; extern unsigned int error[]; extern unsigned int insize; extern unsigned int count; extern unsigned int sumdif; unsigned int t3size=2556; unsigned int outsiz=1999; unsigned int n=0; unsigned int d,e,temp,save; unsigned int h,i,j,k,l,lp,m; unsigned int S[2],T[2],U[2],V[2],X[3]; double sqrt2,halfsr2; FILE *Outfp; Outfp = fopen("out22a1.dat","w"); sqrt2=1.4142135; halfsr2=sqrt2*((double)(0.5)); /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ error[0]=0; // clear error array error[1]=0; error[2]=0; error[3]=0; count=0; for (h=0; h<insize; h++) { d=input[2*h]; e=input[2*h+1]; /******************************************/ /* check if q divides d, e, d+e or d-e */ /******************************************/ if ((d/base)*base==d) goto zskip; if ((e/base)*base==e) goto zskip; if (((d+e)/base)*base==(d+e)) goto zskip; if (((d-e)/base)*base!=(d-e)) continue; /************************************/ /* compute (d**p + e**p)/(d + e) */ /************************************/ zskip:S[0]=0; S[1]=d; for (i=0; i<p-1; i++) { bigprod(S[0], S[1], d, X); S[0]=X[1]; S[1]=X[2]; } T[0]=0; T[1]=e; for (i=0; i<p-1; i++) { bigprod(T[0], T[1], e, X); T[0]=X[1]; T[1]=X[2]; } if (sumdif==1) { sum(S, T); temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; quotient(T, S, temp); } else { differ(S, T); temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; quotient(T, S, temp); } /************************************************/ /* look for prime factors using look-up table */ /************************************************/ if (S[0]==0) l = 32 - lmbd(1, S[1]); else l = 64 - lmbd(1, S[0]); j=l-(l/2)*2; l=l/2; l = 1 << l; if (j==0) lp=(int)(((double)(l))*halfsr2); if (j==1) { lp=l; l=(int)(((double)(l))*sqrt2); } lp=lp-1; l=l+1; if (l>table3[t3size-1]) { error[0]=5; goto bskip; } else { j=0; for (i=0; i<t3size; i++) { if (table3[i] < lp) j=i; else break; } k=j; for (i=j; i<t3size; i++) { if (table3[i] < l) k=i; else break; } } for (i=j; i<=k; i++) { m=0; l = table3[i]; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]!=X[1]) || (S[1]!=X[2])) continue; save=l; aloop: S[0]=V[0]; S[1]=V[1]; m=m+1; quotient(S, V, l); bigprod(V[0], V[1], l, X); if ((S[0]==X[1]) && (S[1]==X[2])) goto aloop; if (m!=2) goto askip; else break; } if (m!=2) continue; if ((S[0]!=0) || (S[1]!=1)) continue; bigresx(0, (save-1)/p, 0, save, U, base); if ((U[0]!=0)||(U[1]!=1)) { error[1]=1; error[2]=d; error[3]=e; goto bskip; } if (n+1>outsiz) { error[0]=6; goto bskip; } output[n]=d; output[n+1]=e; n=n+2; count=count+1; askip:dummy(d, e, 0); } bskip: output[n]=-1; fprintf(Outfp," error0=%d error1=%d asave=%d bsave=%d \n",error[0], error[1],error[2],error[3]); fprintf(Outfp," count=%d \n",(n+1)/2); for (i=0; i<(n+1)/2; i++) fprintf(Outfp," %#10x %#10x \n",output[2*i],output[2*i+1]); fclose(Outfp); if (error[1]!=0) printf(" error \n"); return(0); }