/*****************************************************************************/ /* */ /* FACTOR (a**p+b**p)/(a+b) */ /* 11/29/06 (dkc) */ /* */ /* This C program finds a and b such that [(a**p+b**p)/(a+b)] and */ /* [(a**p-b**p)/(a-b)] are primes of the form p**2*k+1 and p**2 divides */ /* a, b, a-b, or a+b if p>3, or p**2 divides a or b, or p**3 divides a-b or */ /* a+b if p=3. Whether 2 is a pth power modulo [(a**p+b**p)/(a+b)] */ /* or [(a**p-b**p)/(a-b)] is determined. Whether [(a**p+b**p)/(a+b)] is */ /* a pth power modulo [(a**p-b**p)/(a-b)] and whether [(a**p-b**p)/(a-b)] */ /* is a pth power modulo [(a**p+b**p)/(a+b)] is determined. */ /* */ /* The output is "(a<<16)|b, (flag0<<16)|flag1". "flag0" consists of two */ /* bits; if the most significant bit is set, 2 is a pth power modulo */ /* [(a**p-b**p)/(a-b)] and if the least significant bit is set, 2 is a pth */ /* power modulo [(a**p+b**p)/(a+b)]. "flag1" consists of two bits; if */ /* the most significant bit is set, [(a**p+b**p)/(a+b)] is a pth power */ /* modulo [(a**p-b**p)/(a-b)] and if the least significant bit is set, */ /* [(a**p-b**p)/(a-b)] is a pth power modulo [[(a**p+b**p)/(a+b)]. If */ /* "flag0" is not equal to "flag1", an error is indicated ("error[1]" is */ /* is set to a non-zero value). */ /* */ /*****************************************************************************/ #include <stdio.h> #include <math.h> #include "table3b.h" void hugeprod(unsigned int a0, unsigned int a2, unsigned int a4, unsigned int a6, unsigned int *product, unsigned int m0); void dummy(unsigned int a, unsigned int b, unsigned int c); unsigned int lmbd(unsigned int mode, unsigned int a); void sum(unsigned int *addend, unsigned int *augend); void differ(unsigned int *minuend, unsigned int *subtrahend); void bigprod(unsigned int a, unsigned int b, unsigned int c, unsigned int *p); void quotient(unsigned int *a, unsigned int *b, unsigned int); void hugeres(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f, unsigned int g); void bigbigs(unsigned int *a, unsigned int *b); void bigbigd(unsigned int *a, unsigned int *b); void bigbigq(unsigned int a, unsigned int b, unsigned int c, unsigned int d, unsigned int *e, unsigned int f, unsigned int g); int main () { // // Note: The maximum "dbeg" value for p=3 is about 65000. // The maximum "dbeg" value for p=5 is about 65000. // The maximum "dbeg" value for p=7 is about 1000. // The maximum "dbeg" value for p=11 is about 50. // unsigned int p=3; // prime value unsigned int dbeg=1000; // starting "a" value unsigned int dend=1; // ending "a" value unsigned int rflag=1; // if set, p**2 must divide d, e, d+e, or d-e //unsigned int stop=0xf4; extern unsigned short table[]; // prime look-up table extern unsigned int tmptab[]; // extended prime look-up table extern unsigned int output[]; // output array extern unsigned int error[]; // error array unsigned int tmpsav; // size of extended prime look-up table extern unsigned int count; // output count unsigned int tsize=1228; // size of prime look-up table unsigned int tmpsiz; // size of extended prime look-up table unsigned int outsiz=1000*2; // size of output array unsigned int d,e; unsigned int a,b,temp; unsigned int i,j,k,l; unsigned int flag,sumdif,ps,pc; unsigned int tflag,sflag; unsigned int P[4],Q[2],R[2],S[2],T[2],U[2],X[3],Y[4],Z[4]; unsigned int n=0; FILE *Outfp; Outfp = fopen("out16.dat","w"); error[0]=0; // clear error array error[1]=0; error[2]=0; error[3]=0; /*********************************/ /* extend prime look-up table */ /*********************************/ // // copy prime look-up table // for (i=0; i<tsize; i++) tmptab[i] = (unsigned int)(table[i]); tmpsiz=tsize; // // check for small prime factors // for (d=10001; d<160000; d++) { if(d==(d/2)*2) continue; if(d==(d/3)*3) continue; if(d==(d/5)*5) continue; if(d==(d/7)*7) continue; if(d==(d/11)*11) continue; if(d==(d/13)*13) continue; if(d==(d/17)*17) continue; if(d==(d/19)*19) continue; // // find size of largest possible prime factor // find maximum index into prime look-up table // l = (int)(100.0 + sqrt((double)d)); k=0; if (l>table[tsize-1]) { error[0]=1; goto bskip; } else { for (i=0; i<tsize; i++) { if (table[i]<l) k=i; else break; } } flag=1; l=k; // maximum index needed // // check for prime factors using look-up table // for (i=0; i<=l; i++) { k=table[i]; if ((d/k)*k==d) { flag=0; break; } } if (flag==1) { tmptab[tmpsiz]=d; tmpsiz=tmpsiz+1; } } tmpsav=tmpsiz; /***********************************/ /* factor (d**p + e**p)/(d + e) */ /***********************************/ ps=p*p; // p**2 pc=ps*p; // p**3 count=0; for (d=dbeg; d>=dend; d--) { // loop through d values for (e=d-1; e>0; e--) { // loop through e values // if (e!=stop) continue; /*********************************************/ /* check if p**2 divides d, e, d+e or d-e */ /*********************************************/ if (rflag!=0) { if ((d/ps)*ps==d) // check if p**2 divides d goto zskip; if ((e/ps)*ps==e) // check if p**2 divides e goto zskip; if (p!=3) { if (((d+e)/ps)*ps==(d+e)) // check if p**2 divides d+e goto zskip; if (((d-e)/ps)*ps!=(d-e)) // check if p**2 divides d-e continue; } else { if (((d+e)/pc)*pc==(d+e)) // check if p**3 divides d+e goto zskip; if (((d-e)/pc)*pc!=(d-e)) // check if p**e divides d-e continue; } } /****************************************/ /* check for common factors of d and e */ /****************************************/ zskip:if((d==(d/2)*2)&&(e==(e/2)*2)) continue; if((d==(d/3)*3)&&(e==(e/3)*3)) continue; if((d==(d/5)*5)&&(e==(e/5)*5)) continue; if((d==(d/7)*7)&&(e==(e/7)*7)) continue; if((d==(d/11)*11)&&(e==(e/11)*11)) continue; if((d==(d/13)*13)&&(e==(e/13)*13)) continue; if((d==(d/17)*17)&&(e==(e/17)*17)) continue; if((d==(d/19)*19)&&(e==(e/19)*19)) continue; /***********************/ /* Euclidean G.C.D. */ /***********************/ a=d; b=e; if (b>a) { temp=a; a=b; b=temp; } loop: temp = a - (a/b)*b; a=b; b=temp; if (b!=0) goto loop; if (a!=1) continue; /*******************************/ /* compute (d**p+e**p)/(d+e) */ /*******************************/ tflag=0; sflag=0; Y[0]=0; Y[1]=0; Y[2]=0; Y[3]=d; for (i=0; i<p-1; i++) hugeprod(Y[0], Y[1], Y[2], Y[3], Y, d); // multiple-word product Z[0]=0; Z[1]=0; Z[2]=0; Z[3]=e; for (i=0; i<p-1; i++) hugeprod(Z[0], Z[1], Z[2], Z[3], Z, e); // multiple-word product P[0]=Z[0]; P[1]=Z[1]; P[2]=Z[2]; P[3]=Z[3]; bigbigs(Y, Z); // multiple-word sum bigbigd(Y, P); // multiple-word difference temp=d+e; if (((d+e)/p)*p==(d+e)) temp=temp*p; bigbigq(Z[0], Z[1], Z[2], Z[3], Y, 0, temp); // multiple-word quotient R[0]=Y[2]; R[1]=Y[3]; temp=d-e; if (((d-e)/p)*p==(d-e)) temp=temp*p; bigbigq(P[0], P[1], P[2], P[3], Y, 0, temp); // multiple-word quotient Q[0]=Y[2]; Q[1]=Y[3]; /***********************/ /* begin inner loop */ /***********************/ for (sumdif=0; sumdif<2; sumdif++) { if (sumdif==0) { // select between q and r S[0]=Q[0]; S[1]=Q[1]; } else { S[0]=R[0]; S[1]=R[1]; } /*********************************************************/ /* find size of largest possible prime factor */ /* find maximum index into extended prime look-up table */ /*********************************************************/ if (S[0]==0) { l = (33 - lmbd(1, S[1]))/2; // left-most bit detection l = 1 << l; } else { l = (65 - lmbd(1, S[0]))/2; // left-most bit detection l = 1 << l; } k=0; if (l>tmptab[tmpsiz-1]) { k=tmpsiz-1; } else { for (i=0; i<tmpsiz; i++) { if (tmptab[i] < l) k=i; else break; } } l=k; // maximum index needed /************************************************/ /* look for prime factors using look-up table */ /************************************************/ for (i=0; i<=l; i++) { k = tmptab[i]; // load prime quotient(S, T, k); // multiple-word quotient bigprod(T[0], T[1], k, X); // multiple-word product if ((S[0]==X[1]) && (S[1]==X[2])) goto askip; // check if factor } /***********************************************************/ /* continue looking for factors (not necessarily prime) */ /***********************************************************/ // // find size of largest possible factor // if (S[0]==0) { j = (33 - lmbd(1, S[1]))/2; // left-most bit detection j = 1 << j; } else { j = (65 - lmbd(1, S[0]))/2; // left-most bit detection j = 1 << j; } // // loop through potential factors // for (i=tmptab[tmpsiz-1]; i<j; i+=2) { quotient(S, T, i); // multiple-word quotient bigprod(T[0], T[1], i, X); // multiple-word product if ((X[1]==S[0]) && (X[2]==S[1])) // check if factor goto askip; } /****************************************************************************/ /* check if [(a**p+b**p)/(a+b)] or [(a**p-b**p)/(a-b)] is of form p**2*k+1 */ /****************************************************************************/ T[0]=0; T[1]=1; differ(S, T); // multiple-word difference quotient(T, T, ps); // multiple-word quotient bigprod(T[0], T[1], ps, X); // multiple-word product T[0]=0; T[1]=1; differ(S, T); // multiple-word difference if ((X[1]!=T[0]) || (X[2]!=T[1])) // check if p**2 is factor goto askip; /***********************************/ /* check if proposition satisfied */ /***********************************/ quotient(T, T, p); // (q-1)/p hugeres(T[0], T[1], S[0], S[1], U, 0, 2); // 2**((q-1)/p) modulus q if ((U[0]!=0)||(U[1]!=1)) // check if 2**((q-1)/p)==1(mod q) tflag=tflag|1; // set flag if (sumdif==0) hugeres(T[0], T[1], S[0], S[1], U, R[0], R[1]); // least residue else hugeres(T[0], T[1], S[0], S[1], U, Q[0], Q[1]); // least residue if ((U[0]!=0)||(U[1]!=1)) // check if r**((q-1)/p)=1(mod q) sflag=sflag|1; // set flag if (sumdif==0) { tflag=tflag<<1; // left-shift flag for packing sflag=sflag<<1; // left-shift flag for packing } else { // output results if (n+1>outsiz) { error[0]=6; goto bskip; } output[n]=(d<<16) | e; // output d and e output[n+1]=(tflag<<16)|sflag; // output packed flags n=n+2; count=count+1; // increment count if (tflag!=sflag) error[1]=8; } } askip: dummy(d,e,0); } } bskip: output[n]=0xffffffff; fprintf(Outfp," error0=%d error1=%d \n",error[0],error[1]); fprintf(Outfp," count=%d \n",(n+1)/2); for (i=0; i<(n+1)/2; i++) fprintf(Outfp," %#10x %#10x \n",output[2*i],output[2*i+1]); fclose(Outfp); if (error[1]!=0) printf(" error \n"); return(0); }