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Abstract

Relationships between the Farey sequence and the Riemann hypothesis
other than the Franel-Landau theorem are discussed.

1 Introduction

The Farey sequence Fx of order x is the ascending series of irreducible fractions
between 0 and 1 whose denominators do not exceed x. In this article, the fraction
0/1 is not considered to be in the Farey sequence. The number of fractions in Fx
is A(x) :=

∑x
i=1 φ(i) where φ is Euler’s totient function. For v = 1, 2, 3, ..., A(x)

let δv denote the amount by which the vth term of the Farey sequence differs
from v/A(x). Franel (in collaboration with Landau) [1] proved that the Riemann

hypothesis is equivalent to the statement that |δ1|+ |δ2|+ ...+ |δA(x)| = o(x
1
2+ε)

for all ε > 0 as x → ∞. Let M(x) denote the Mertens function (M(x) :=∑x
i=1 µ(i) where µ(i) is the Möbius function). Littlewood [2] proved that the

Riemann hypothesis is equivalent to the statement that for every ε > 0 the
function M(x)x−(1/2)−ε approaches zero as x → ∞. Mertens conjectured that
|M(x)| <

√
x. This was disproved by Odlyzko and te Riele [3]. The Stieltjes

hypothesis states that M(x) = O(x
1
2 ).

2 An Upper Bound of |M(x)|
Lehman [4] proved that

∑x
i=1M(bx/ic) = 1. In general,

∑x
i=1M(bx/(in)c) = 1,

n = 1, 2, 3, ..., x (since bbx/nc/ic = bx/(in)c). Let R′ denote a square ma-
trix where element (i, j) equals 1 if j divides i or 0 otherwise. (In a Redheffer
matrix, element (i, j) equals 1 if i divides j or if j = 1. Redheffer [5] proved
that the determinant of such a x by x matrix equals M(x).) Let T denote the
matrix obtained from R′ by element-by-element multiplication of the columns
by M(bx/1c), M(bx/2c), M(bx/3c), ..., M(bx/xc). Let U denote the matrix ob-
tained from T by element-by-element multiplication of the columns by φ(j). The
sum of the columns of U then equals A(x). i =

∑
d|i φ(d), so

∑x
i=1M(bx/ic)i

(the sum of the rows of U) equals A(x).
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Theorem (1)
∑x
i=1M(bx/ic)i = A(x)

By the Schwarz inequality, A(x)/
√
x(x+ 1)(2x+ 1)/6 is a lower bound of

√∑x
i=1M(bx/ic)2.

See Figure 1 for a plot of
∑x
i=1M(bx/ic)2 for x = 2, 3, 4, ..., 10000. Let Λ(i)

denote the Mangoldt function (Λ(i) equals log(p) if i = pm for some prime p and
some m ≥ 1 or 0 otherwise). Mertens [6] proved that

∑x
i=1M(bx/ic) log(i) =

ψ(x) where ψ(x) denotes the second Chebyshev function (ψ(x) :=
∑
i≤x Λ(i)).

Let σx(i) denote the sum of positive divisors function (σx(i) :=
∑
d|i d

x). Re-

placing φ(j) with log(j) in the U matrix gives a similar result.

Theorem (2)
∑x
i=1M(bx/ic) log(i)σ0(i)/2 = log(x!)

The following conjecture is based on data collected for x ≤ 10000.

Conjecture (1) log(x!) ≥
∑x
i=1M(bx/ic)2 ≥ ψ(x)

By Stirling’s formula, log(x!) = x log(x)− x+O(log(x)). Since log(x) increases
more slowly than any positive power of x, this is a better upper bound of∑x
i=1M(bx/ic)2 than x1+ε for any ε > 0.

3 Shorter Intervals of Farey Points

Let r1, r2, ..., rA(x) denote the terms of the Farey sequence of order x and let h(ξ)
denote the number of rv less than or equal to ξ. Kanemitsu and Yoshimoto [7]
proved that each of the estimates

∑
rv≤1/3(rv − h(1/3)/(2A(x)) = O(x1/2+ε)

and
∑
rv≤1/4(rv − h(1/4)/(2A(x)) = O(x1/2+ε) is equivalent to the Riemann

hypothesis. Let n = 4, 5, 6, ..., and let j = bn/2c. Let yx(n) denote the number
of fractions less than 1/n and let zx(n) denote the number of fractions greater
than 1/n and less than 2/n in a Farey sequence of order x. (If x ≤ n, set yx to
0. If x ≤ j, set zx to 0. If x > j and x < n, set zx to x− j. If x = n, set zx to

j − 1 if n is even or j if n is odd.) Franel proved that M(x) =
∑A(x)
v=1 e

2πirv , so
there should be some discernible relationship between M(x) and yx(4)− zx(4).
The “curve” of yx(4) − zx(4) values resembles that of M(x) in that the peaks
and valleys occur roughly at the same places and have about the same heights
and depths. See Figure 2 for a plot of M(x) for x = 1, 2, 3, ..., 5000. See
Figure 3 for a plot of yx(4) − zx(4) for x = 1, 2, 3, ..., 5000. Let hx(n) denote∑x
i=1(zbx/ic(n)− ybx/ic(n)).

Theorem (3) hx+n(n) = hx(n) + b(n− 1)/2c

The value of hx(4)− hx−1(4) is determined by the distribution of the fractions
1/x, 2/x, 3/x, ..., b(x − 1)/2c/x about 1/4. The difference in the number of
fractions after 1/4 and before 1/4 is 0 unless 4 divides x+ 1, in which case it is
1. Similar arguments are applicable for n > 4.
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While
∑x
i=1M(bx/ic) has only one value (1),

∑x
i=1(ybx/ic(n)−zbx/ic(n)+b(n−

1)/2c/n) has up to n values. (For n = 4, these values are 1/2, 1/4, 0, or
−1/4.) Additional comparisons of M(x) and yx(n) − zx(n) can then be made
by replacing M(bx/ic) by ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n in formulas
such as

∑x
i=1M(bx/ic) log(i) = ψ(x). See Figure 4 for a plot of ψ(x) and∑x

i=1(ybx/ic(4) − zbx/ic(4) + 1/4) log(i) for x = 2, 3, 4, ..., 5000 (the prime
number theorem is equivalent to the limit relation limx→∞ψ(x)/x = 1). For
a linear least-squares fit of

∑x
i=1(ybx/ic(4) − zbx/ic(4) + 1/4) log(i) for x = 2,

3, 4, ..., 5000, p1 = 0.2188 with a 95% confidence interval of (0.2186, 0.219),
p2 = 0.9646 with a 95% confidence interval of (0.3782, 1.551), SSE=5.582e+5,
R-square=0.9989, and RMSE=10.57. See Figure 5 for a plot of log(x!) and
4.38

∑x
i=1(ybx/ic(4)−zbx/ic(4)+1/4) log(i)σ0(i)/2 (superimposed on each other)

for x = 2, 3, 4, ..., 1000.

Let λ(i) denote the Liouville function (λ(1) := 1 or if i = pa11 · · · p
ak
k , λ(i) =

(−1)a1+...+ak). Let L(x) :=
∑
i≤x λ(i). LetH(x) :=

∑
i≤x µ(i) log(i). (H(x)/(x log(x))→

0 as x→∞ and limx→∞(M(x)/x−H(x)/(x log(x))) = 0.) Other relationships
that are useful for comparing M(x) and yx(n)− zx(n) are;

Theorem (4)
∑x
i=1M(bx/ic)σ0(i) = x

Theorem (5)
∑x
i=1M(bx/ic)σ1(i) = x(x+ 1)/2

Theorem (6)
∑x
i=1M(bx/ic)σ2(i) = x(x+ 1)(2x+ 1)/6

Theorem (7)
∑x
i=1M(bx/ic)Λ(i) = −H(x)

Theorem (8)
∑x
i=1M(bx/ic) where the summation is over i values that are

perfect squares equals L(x)

See Figure 6 for a plot of
∑x
i=1(ybx/ic(5)− zbx/ic(5) + 2/5)σ0(i) for x = 2, 3, 4,

..., 1000. For a linear least-squares fit of
∑x
i=1(ybx/ic(5)− zbx/ic(5) + 2/5)σ0(i)

for x = 2, 3, 4, ..., 1000, p1 = 0.3734 with a 95% confidence interval of (0.3731,
0.3738), p2 = 0.1253 with a 95% confidence interval of (−0.08557, 0.3362),
SSE=2863, R-square=0.9998, and RMSE=1.695. See Figure 7 for a plot of∑x
i=1(ybx/ic(6) − zbx/ic(6) + 1/3)σ1(i) for x = 2, 3, 4, ..., 200. For a quadratic

least-squares fit of
∑x
i=1(ybx/ic(6) − zbx/ic(6) + 1/3)σ1(i) for x = 2, 3, 4, ...,

200, SSE=2.531e+4, R-square=1, and RMSE=11.36. See Figure 8 for a plot
of

∑x
i=1(ybx/ic(7) − zbx/ic(7) + 3/7)σ2(i) for x = 2, 3, 4, ..., 100. For a cubic

least-squares fit of
∑x
i=1(ybx/ic(7) − zbx/ic(7) + 3/7)σ2(i) for x = 2, 3, 4, ...,

100, SSE=1.454e+6, R-square=1, and RMSE=123.7. See Figure 9 for a plot of
1/(x log(x))

∑x
i=1(ybx/ic(4)− zbx/ic(4) + 1/4)Λ(i) for x = 2, 3, 4, ..., 5000. See

Figure 10 for a plot of L(x) and
∑x
i=1(ybx/ic(4)−zbx/ic(4)+1/4) where the sum-

mation is over i values that are perfect squares for x = 2, 3, 4, ..., 1000. (Pólya
conjectured that L(x) ≤ 0 for x ≥ 2. This was disproved by Haselgrove [8].)
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See Figure 11 for a plot of yx(65)− zx(65) for x = 2, 3, 4, ..., 1625. See Figure
12 for a plot of yx(200) − zx(200) for x = 2, 3, 4, ..., 5000. See Figure 13
for a plot of yx(200) − zx(200) for x = 100, 200, 300, ..., 5000. Note that the
values of yx(200) − zx(200) in the x intervals of (100, 200), (200, 300), (300,
400), ..., can be approximated by linear interpolation. For even n, the limits of
(yn/2(n)−zn/2(n))/n, (yn(n)−zn(n))/n, (y3n/2(n)−z3n/2(n))/n, ...., as n→∞
appear to be −1/2, −1/4, −1/3, −1/6, −2/5, −2/15, −31/105, −29/140,
−19/42, −41/420, −76/385, −201/1540, −751/1430, −1109/4004, −803/2718,
−857/13411, −3577/11807, −721/17163, −738/2897, .... Let δ1(1), δ1(2), δ1(3),
..., denote these limits and let δm(x), m = 2, 3, 4, ..., denote the limits and m−1
values that have been linearly interpolated between successive limits. See Figure
14 for a plot of −

∑x
i=1 δ4(bx/ic) for x = 1, 2, 3, ..., 76 (19 limits were used). For

a linear least-squares fit of −
∑x
i=1 δ4(bx/ic) for x = 1, 2, 3, ..., 76, p1 = 0.1278

with a 95% confidence interval of (0.1266, 0.1291), p2 = −0.05671 with a 95%
confidence interval of (−0.1116, −0.001796), SSE=0.979, R-square=0.9983, and
RMSE=0.1158. See Figure 15 for a plot of

∑x
i=1(δ4(bx/ic) + 0.1278) log(i) for

x = 1, 2, 3, ..., 76. For a linear least-squares fit of
∑x
i=1(δ4(bx/ic)+0.1278) log(i)

for x = 1, 2, 3, ..., 76, SSE=2.233, R-square=0.9945, and RMSE=0.1749. See
Figure 16 for a plot of

∑x
i=1(δ4(bx/ic) + 0.1278)σ1(i) for x = 1, 2, 3, ..., 76.

For a quadratic least-squares fit of
∑x
i=1(δ4(bx/ic) + 0.1278)σ1(i) for x = 1, 2,

3, ..., 76, SSE=81.03, R-square=0.9999, and RMSE=1.061. See Figure 17 for a
plot of

∑x
i=1(δ4(bx/ic) + 0.1278)σ2(i) for x = 1, 2, 3, ..., 76. For a cubic least-

squares fit of
∑x
i=1(δ4(bx/ic) + 0.1278)σ2(i) for x = 1, 2, 3, ..., 76, SSE=5210,

R-square=1, and RMSE=8.567.

See Figure 18 for a plot of −
∑x
i=1 δ1(bx/ic) and −

∑x
i=1 δ1(bx/ic)Λ(i) for

x = 2, 3, 4, ..., 999 (these values were computed using 1000 approximate
limits accurate to about 6 decimal places). For a linear least-squares fit of
−
∑x
i=1 δ1(bx/ic) for x = 2, 3, 4, ..., 999, p1 = 0.1704 with a 95% confidence

interval of (0.1073, 0.1706), p2 = −0.04484 with a 95% confidence interval of
(−0.1291, 0.03936), SSE=455.6, R-square=0.9998, and RMSE=0.6763. For a
linear least-squares fit of −

∑x
i=1 δ1(bx/ic)Λ(i) for x = 2, 3, 4, ..., 999, p1 = 0.17

with a 95% confidence interval of (0.1695, 0.1705), p2 = −0.2796 with a 95%
confidence interval of (−0.5688, 0.009683), SSE=5374, R-square=0.9978, and
RMSE=2.323. See Figure 19 for a plot of the p1 values of the linear least-squares
fits of −

∑x
i=1 δ1(bx/ic)Λ(i), −

∑x
i=1 δ2(bx/ic)Λ(i), −

∑x
i=1 δ3(bx/ic)Λ(i), ...,

−
∑x
i=1 δ36(bx/ic)Λ(i) for respective x values up to 999, 1999, 2999, ..., 35999.

See Figure 20 for a plot of −
∑x
i=1 δ100(bx/ic) and −

∑x
i=1 δ100(bx/ic)Λ(i) (su-

perimposed on each other) for x = 2, 3, 4, ..., 99999. For a linear least-
squares fit of −

∑x
i=1 δ100(bx/ic) for x = 2, 3, 4, ..., 99999, p1 = 0.01936

with a 95% confidence interval of (0.01936, 0.01936), p2 = −0.1094 with a
95% confidence interval of (−0.1154, −0.1034), SSE=2.347e+4, R-square=1,
and RMSE=0.4845. For a linear least-squares fit of −

∑x
i=1 δ100(bx/ic)Λ(i) for

x = 2, 3, 4, ..., 99999, p1 = 0.01936 with a 95% confidence interval of (0.01936,
0.01936), p2 = −0.6391 with a 95% confidence interval of (−0.6584, −0.6198),
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SSE=2.415e+4, R-square=1, and RMSE=1.554.

Let (α ◦ F )(x) denote
∑
i≤x α(i)F (bx/ic) where α is an arithmetical function.

(Usually(α◦F )(x) denotes
∑
i≤x α(i)F (x/i) where F is a real or complex-valued

function defined on (0, +∞) such that F (x) = 0 for 0 < x < 1.) Let u(x) = 1 for
all x. See Figure 21 for a plot of (u◦δ1)◦δ1 for x = 2, 3, 4, ..., 999. For a quadratic
least-squares fit of (u ◦ δ1) ◦ δ1 for x = 2, 3, 4, ..., 999, p1 = 0.008421 with a
95% confidence interval of (0.008414, 0.008428), p2 = 0.001703 with a 95% con-
fidence interval of (−0.005279, 0.008684), p3 = −0.01665 with a 95% confidence
interval of (−1.53, 1.497), SSE=6.483e+4, R-square=1, and RMSE=8.072. See
Figure 22 for a plot of (Λ ◦ δ1) ◦ δ1 for x = 2, 3, 4, ..., 999. For a quadratic
least-squares fit of (Λ ◦ δ1) ◦ δ1 for x = 2, 3, 4, ..., 999, p1 = 0.00847 with
a 95% confidence interval of (0.008459, 0.008428), p2 = −0.09465 with a 95%
confidence interval of (−0.1054, −0.08319), p3 = 4.914 with a 95% confidence
interval of (2.586, 7.242), SSE=1.534e+5, R-square=1, and RMSE=12.42.

Let ck(x) denote Ramanujan’s sum (ck(x) :=
∑
m mod k,(m,k)=1e

2πimx/k).

Conjecture 2
∑x
i=1(ybx/ic(n)− zbx/ic(n))ck(i) is a periodic function with pe-

riod nk.

See Figure 23 for a plot of
∑x
i=1(ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n)ck(i)

where n = 13, k = 13, and x = 1, 2, 3, ..., 169 and
∑x
i=1(ybx/ic(n)− zbx/ic(n) +

b(n − 1)/2c/n) where n = 169 and x = 1, 2, 3, ..., 169. See Figure 24 for a
corresponding plot where n = 12, k = 10, and x = 1, 2, 3, ..., 120 and where
n = 120 and x = 1, 2, 3, ..., 120. See Figure 25 for a plot of the real parts of the
Fourier coefficients of

∑x
i=1(ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n)ck(i) where

n = 4, k = 19, and x = 1, 2, 3, ..., 76. The Fourier coefficients resemble those of
a triangular pulse. See Figure 26 for a plot of

∑x
i=1M(bx/ic)ck(i) where k = 150

and x = 2, 3, 4, ..., 300. Based on empirical evidence,
∑x
i=1M(bx/ic)ck(i) =

φ(k) for x ≥ k.

4 Similar Convolutions

χ3(n) for n = 1, 2, 3, ..., 7 (a Dirichlet character mod 7) equal 1, ω2, ω, −ω, −ω2,
−1, and 0 respectively where ω = eπi/3. Let G(n, χ) denote the Gauss sum asso-

ciated with the Dirichlet character χ (G(n, χ) :=
∑k
m=1 χ(m)e2πimn/k). See Fig-

ure 27 for a plot of the real and imaginary components of
∑x
i=1G(bx/ic, χ) for χ3

mod 7 and x = 2, 3, 4, ..., 10000. For a linear least-squares fit of the real compo-
nents, p1 = −0.9076 with a 95% confidence interval of (−0.9077, −0.9075), p2 =
−0.5368 with a 95% confidence interval of (−1.155, 0.0809), SSE=2.481e+6, R-
square=1, and RMSE=15.75. For a linear least-squares fit of the imaginary com-
ponents, p1 = 0.8163 with a 95% confidence interval of (0.8163, 0.8164), p2 =
0.4341 with a 95% confidence interval of (0.0005613, 0.8677), SSE=1.222e+6, R-
square=1, and RMSE=11.06. See Figure 28 for a plot of the real components of
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∑x
i=1(G(bx/ic, χ) + 0.9076) log(i) for x = 2, 3, 4, ..., 10000. See Figure 29 for a

plot of the imaginary components of
∑x
i=1(G(bx/ic, χ)−0.8163) log(i) for x = 2,

3, 4, ..., 10000. See Figure 30 for a plot of the real and imaginary components
of

∑x
i=1G(bx/ic, χ)σ1(i) for x = 2, 3, 4, ..., 1000. For a quadratic least-squares

fit of the real components, SSE=3.689e+8, R-square=1, and RMSE=608.6. For
a quadratic least-squares fit of the imaginary components, SSE=1.568e+8, R-
square=1, and RMSE=396.8. For a linear least-squares fit of the real compo-
nents of

∑x
i=1G(bx/ic, χ) for a Dirichlet character mod 13 and x = 2, 3, 4, ...,

10000, p1 = −1.247 with a 95% confidence interval of (−1.247, −1.247), p2 =
−0.7447 with a 95% confidence interval of (−1.438, −0.05162), SSE=3.123e+6,
R-square=1, and RMSE=17.68. For a linear least-squares fit of the imagi-
nary components, p1 = 0.08855 with a 95% confidence interval of (0.08847,
0.08863), p2 = 0.004809 with a 95% confidence interval of (−0.4693, 0.4789),
SSE=1.461e+6, R-square=0.9978, and RMSE=12.09. See Figure 31 for a plot
of the real components of −

∑x
i=1(G(bx/ic, χ) + 1.247) log(i)σ0(i)/2 for the

Dirichlet character mod 13, the imaginary components of −
∑x
i=1(G(bx/ic, χ)−

0.08855) log(i)σ0(i)/2 for the Dirichlet character mod 13, 1.25 log(x!), and 0.2289 log(x!)
for x = 2, 3, 4, ..., 1000. See Figure 32 for a plot of the real and imaginary com-
ponents of

∑x
i=1(ybx/ic(n) − zbx/ic(n) + b(n − 1)/2c/n)G(i, χ) where n = 200,

χ is a Dirichlet character mod 11, and x = 2, 3, 4, ..., 2000.

See Figure 33 for a plot of
∑x
i=1 ck(bx/ic) for k = 17 and x = 2, 3, 4, ...,

500. When k is prime, the points fall on parallel lines having a slope of -
1. Also, the bottom line persists until x > k2. See Figure 34 for a plot of∑x
i=1 ck(bx/ic)σ1(i) for k = 15 and x = 2, 3, 4, ..., 1000. For a quadratic

least-squares fit, SSE=3.622e+8, R-square=1, and RMSE=603. See Figure 35
for a plot of

∑x
i=1(ck(bx/ic) + 1) log(i) for k = 11 and x = 2, 3, 4, ..., 1000. See

Figure 36 for a plot of
∑x
i=1(ck(bx/ic) + 1)M(i) for k = 29 and x = 2, 3, 4, ...,

1000. See Figure 37 for a plot of
∑x
i=1(ck(bx/ic) + 1)(yi(n)− zi(n)) for k = 7,

n = 100, and x = 2, 3, 4, ..., 1000.

5 More on an Upper Bound of |M(x)|
Let j(x) :=

∑x
i M(x/i)2 where the summation is over i values where i|x. Let

l1, l2, l3, ... denote the x values where j(x) is a local maximum (that is, greater
than all preceding j(x) values) and let m1, m2, m3, ... denote the values of
the local maxima. The local maxima occur at x values that equal products
of powers of small primes (Lagarias [9] discusses colossally abundant numbers
and their relationship to the Riemann hypothesis). See Figure 38 for a plot of
li/(log(li)mi), mi/li, and 1/ log(li) for i = 1, 2, 3, ..., 516 (corresponding to
the local maxima for x ≤ 1000000000). The first two curves cross frequently, so
there are i values where mi is approximately equal to li/

√
log(li). See Figure 39

for a plot of j(x) and
∑x
i=1M(bx/ic)2 for x = 2, 3, 4, ..., 10000. See Figure 40

for a plot of 1/ log(li) and 1/ log(i+ 1)− 0.11 for i = 1, 2, 3, ..., 516. See Figure
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41 for a plot of log(li), log(M(li)
2), and log(mi/σ0(li)) for i = 1, 2, 3, ..., 516.

Note that the vertical distance between the first two curves is roughly constant
so that M(li)

2 increases linearly (roughly) with x. However, the growing devia-
tion of li/(log(li)mi) and mi/li from li/

√
log(li) as shown in Figure 38 indicates

that the Stieltjes conjecture is false. See Figure 42 for a plot of |M(li)|/
√
li for

i = 1, 2, 3, ..., 516. The largest known value of M(x)/
√
x (computed by Kotnik

and van de Lune [10] for x ≤ 1014) is 0.570591 (for M(7766842813) = 50286).

Let li and mi be similarly defined for the function k(x) :=
∑x
i=1 |M(x/i)|

where the summation is over i values where i|x. See Figure 43 for a plot of√
li/mi, mi/li, and 1/

√
li for i = 1, 2, 3, ..., 180 (corresponding to the lo-

cal maxima for x ≤ 400000000). See Figure 44 for a plot of 1/ log(li) and
1/ log(i + 1) − 0.14 for i = 1, 2, 3, ..., 180. See Figure 45 for a plot of
log(mi/σ0(li)) for i = 1, 2, 3, ..., 180. For a quadratic least-squares fit of
log(mi/σ0(li)) for i = 1, 2, 3, ..., 180, p1 = −3.242e-5 with a 95% confidence in-
terval of (−3.998e-5, −2.486e-5), p2 = 0.03064 with a 95% confidence interval of
(0.02923, 0.03206), p3 = −0.05244 with a 95% confidence interval of (−0.1078,
0.00295), SSE=2.728, R-square=0.991, and RMSE=0.1241. See Figure 46 for a
plot of log(li), log(|M(li)|), and log(mi/σ0(li)) for i = 1, 2, 3, ..., 180. In this
case, the locations and values of local maxima are less dependent on M(x/1).

Let li and mi be similarly defined for the function g(x) :=
∑x
i=1(ybx/ic(10) −

zbx/ic(10))2 where the summation is over i values where i|x. See Figure 47
for a plot of li/(log(li)mi) and mi/li for i = 1, 2, 3, ..., 65 (corresponding to
the local maxima for x ≤ 30000). See Figure 48 for a plot of 1/ log(li) and
1/ log(i + 1) − 0.13 for i = 1, 2, 3, ..., 65. See Figure 49 for a plot of log(li),
log((yli(10) − zli(10))2), and log(mi/σ0(li)) for i = 1, 2, 3, ..., 65. Let li and
mi be similarly defined for the function h(x) :=

∑x
i=1(ybx/ic(12)− zbx/ic(12))2

where the summation is over i values where i|x. See Figure 50 for a plot of
li/(log(li)mi) and mi/li for i = 1, 2, 3, ..., 63 (corresponding to the local max-
ima for x ≤ 30000).

Let li and mi be similarly defined for the function σ0(x). For a quadratic
least-squares fit of log(mi/li) for i = 1, 2, 3, ..., 65 (corresponding to the local
maxima for x ≤ 1000000000), p1 = 0.0009031 with a 95% confidence inter-
val of (0.0007913, 0.001015), p2 = −0.2634 with a 95% confidence interval of
(−0.2711, −0.2558), p3 = 0.2064 with a 95% confidence interval of (0.0976,
0.3153), SSE=1.247, R-square=0.9987, and RMSE=0.1418. For a quadratic
least-squares fit of log(li) for i = 1, 2, 3, ..., 65, p1 = −0.002029 with a 95%
confidence interval of (−0.002256, −0.001802), p2 = 0.424 with a 95% con-
fidence interval of (0.4086, 0.4395), p3 = 1.043 with a 95% confidence inter-
val of (0.8219, 1.264), SSE=5.15, R-square=0.9974, and RMSE=0.2882. Let
b(x, χ) :=

∑x
i=1 |G(x/i, χ)|2 where the summation is over i values where i|x.

See Figure 51 for a plot of mi for i = 1, 2, 3, ..., 37 (corresponding to the local
maxima for x ≤ 1000000). For a quadratic least-squares fit of mi for i = 1,
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2, 3, ..., 37, p1 = 0.188 with a 95% confidence interval of (0.1773, 0.1987),
p2 = −0.627 with a 95% confidence interval of (−1.045, −0.2095), p3 = 4.885
with a 95% confidence interval of (1.445, 8.326), SSE=358.8, R-square=0.9981,
and RMSE=3.249. See Figure 52 for a plot of log(li) for i = 1, 2, 3, ..., 37. For a
quadratic least-squares fit of log(li) for i = 1, 2, 3, ..., 37, p1 = −0.004631 with
a 95% confidence interval of (−0.005132, −0.004131), p2 = 0.5276 with a 95%
confidence interval of (0.508, 0.5472), p3 = 0.3631 with a 95% confidence inter-
val of (0.2015, 0.5246), SSE=0.7912, R-square=0.9985, and RMSE=0.1525. See
Figure 53 for a plot of b(li, χ)/mi for a non-principal Dirichlet character mod 3
and i = 1, 2, 3, ..., 37 (the values are 3/1, 3/2, 3/3, 3/4, or 3/5). For i = 1 and
i = 2, |G(li, χ)|2 = 3 and for i > 2, |G(li, χ)|2 = 0.

Let li and mi be similarly defined for the function σ0(x) with the additional
stipulation that ||G(x, χ)|2 − k| < 0.1 where k is the modulus of the Dirichlet
character. When k is prime, there appear to be Dirichlet characters (non-
principal) such that b(li, χ) = mik. (There are also such Dirichlet characters
for many composite values of k.) When k is prime, a better stipulation is that
k does not divide x (making it unnecessary to compute |G(x, χ)|2). See Figure
54 for a plot of log(mi/li) for k = 2 and i = 1, 2, 3, ..., 34 (corresponding to the
local maxima for x ≤ 1000000000). For a linear least-squares fit of log(mi/li)
for i = 1, 2, 3, ..., 34, p1 = −0.4037 with a 95% confidence interval of (−0.4141,
−0.3934), p2 = −0.6406 with a 95% confidence interval of (−0.8478, −0.4333),
SSE=2.694, R-square=0.995, and RMSE=0.2901. See Figure 55 for a plot of
log(li) for k = 2 and i = 1, 2, 3, ..., 34. For a quadratic least-squares fit of
log(li) for i = 1, 2, 3, ..., 34, p1 = −0.005143 with a 95% confidence inter-
val of (−0.006254, −0.004032), p2 = 0.7344 with a 95% confidence interval of
(0.6943, 0.7745), p3 = 0.9003 with a 95% confidence interval of (0.5959, 1.205),
SSE=2.312, R-square=0.9977, and RMSE=0.2731. For a linear least-squares
fit of log(mi/li) for k = 3 and i = 1, 2, 3, ..., 48 (corresponding to the local
maxima for x ≤ 1000000000), p1 = −0.2903 with a 95% confidence interval of
(−0.2964, −0.2842), p2 = −0.2597 with a 95% confidence interval of (−0.4315,
−0.08794), SSE=3.897, R-square=0.995, and RMSE=0.291. For a linear least-
squares fit of log(mi/li) for k = 5 and i = 1, 2, 3, ..., 54 (corresponding to
the local maxima for x ≤ 1000000000), p1 = −0.2556 with a 95% confidence
interval of (−0.2574, −0.2538), p2 = 0.1686 with a 95% confidence interval of
(0.113, 0.2241), SSE=0.5232, R-square=0.9994, and RMSE=0.1003. For a lin-
ear least-squares fit of log(mi/li) for k = 7 and i = 1, 2, 3, ..., 70 (corresponding
to the local maxima for x ≤ 1000000000), p1 = −0.1941 with a 95% confidence
interval of (−0.1975, −0.1907), p2 = −0.5277 with a 95% confidence interval of
(−0.6663, −0.3892), SSE=5.612, R-square=0.9948, and RMSE=0.2873.

Let li and mi be similarly defined for the function σ0(x) with the additional
stipulation that |M(x)| = k. See Figure 56 for a plot of log(mi/li) for k = 1
and i = 1, 2, 3, ..., 31 (corresponding to the local maxima for x ≤ 1000000000).
For a quadratic least-squares fit of log(mi/li) for k = 1 and i = 1, 2, 3, ...,
31, p1 = −0.008157 with a 95% confidence interval of (−0.009575, −0.00674),

8



p2 = −0.1901 with a 95% confidence interval of (−0.2368, −0.1433), p3 =
−0.02875 with a 95% confidence interval of (−0.3533, 0.2958), SSE=2.122,
R-square=0.9959, and RMSE=0.2753. Let m′i = j(li). See Figure 57 for a
plot of li/(log(li)m

′
i), m

′
i/li, and 1/ log(li) for k = 1 and i = 1, 2, 3, ..., 31.

See Figure 58 for a plot of log(m′i) for i = 1, 2, 3, ..., 31. For a quadratic
least-squares fit of log(m′i) for i = 1, 2, 3, ..., 31, p1 = 0.009924 with a 95%
confidence interval of (0.007953, 0.0119), p2 = 0.2451 with a 95% confidence
interval of (0.1801, 0.3101), p3 = 0.6756 with a 95% confidence interval of
(0.2243, 1.127), SSE=4.103, R-square=0.9949, and RMSE=0.3828. See Figure
59 for a plot of log(li) for i = 1, 2, 3, ..., 31. For a quadratic least-squares
fit of log(li) for i = 1, 2, 3, ..., 31, p1 = 0.006226 with a 95% confidence in-
terval of (0.004778, 0.007673), p2 = 0.4393 with a 95% confidence interval of
(0.3916, 0.487), p3 = 0.68 with a 95% confidence interval of (0.3486, 1.011),
SSE=2.212, R-square=0.9978, and RMSE=0.2811. See Figure 60 for a plot of
log(li/

√
log(li)) and log(m′i) for i = 1, 2, 3, ..., 31 (the two curves should inter-

sect at about the 42nd maxima [having an estimated l value of about 1.2e+13]).
See Figure 61 for a plot of the p1 values of the quadratic least-squares fits of
log(m′i) and the p1 values of the quadratic least-squares fits of log(l1) for k = 0,
1, 2, ..., 12 and i = 19, 31, 28, 25, 29, 28, 23, 26, 28, 25, 26, 24, 23 respectively
(corresponding to the local maxima for x ≤ 1000000000). See Figure 62 for
a plot of the p2 values of the quadratic least-squares fits of log(li) and the p2
values of the quadratic least-squares fits of log(m′1) for k = 0, 1, 2, ..., 12. See
Figure 63 for a plot of the p3 values of the quadratic least-squares fits of log(li)
and the p3 values of the quadratic least-squares fits of log(m′1) for k = 0, 1, 2, ...,
12. The R-square values for the quadratic least-squares fits of the log(m′i) values
are 0.9739, 0.9949, 0.9843, 0.9904, 0.9748, 0.991, 0.9867, 0.9872, 0.9859, 0.9903,
0.9836, 0.9957, and 0.9807 respectively. The R-square values for the quadratic
least-squares fits of the log(li) values are 0.981, 0.9978, 0.9917, 0.9931, 0.9844,
0.9932, 0.9937, 0.995, 0.991, 0.9926, 0.9856, 0.9944, and 0.9878 respectively.
See Figure 64 for a plot of li/(log(li)m

′
i), m

′
i/li, and 1/ log(li) for k = 2000 and

i = 1, 2, 3, ..., 17 (corresponding to the local maxima for x ≤ 1000000000). See
Figure 65 for a plot of log(m′i) for i = 1, 2, 3, ..., 17. See Figure 66 for a plot
of log(li) for i = 1, 2, 3, ..., 17. See Figure 67 for a plot of log(li/

√
log(li)) and

log(m′i) for i = 1, 2, 3, ..., 17. These curves are typical for large k values. If the
first few maxima are disregarded (in this case the first 11 maxima), the curves
of the log(m′i) and log(li) values appear to be quadratic (based on the small
amount of data available).

Let li and mi be similarly defined for the function σ0(x) with the additional
stipulation that |M(x)| ≤ k. Let m′i = j(li). See Figure 68 for a plot of
li/(log(li)m

′
i), m

′
i/li, and 1/ log(li) for k = 10 and i = 1, 2, 3, ..., 46 (correspond-

ing to the local maxima for x ≤ 1000000000). See Figure 69 for a plot of log(m′i)
for i = 1, 2, 3, ..., 46. For a quadratic least-squares fit of log(m′i) for i = 1, 2,
3, ..., 46, p1 = 0.002978 with a 95% confidence interval of (0.002156, 0.0038),
p2 = 0.2244 with a 95% confidence interval of (0.1845, 0.2642), p3 = 1.03 with
a 95% confidence interval of (0.6242, 1.437), SSE=8.161, R-square=0.9925, and
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RMSE=0.4356. See Figure 70 for a plot of log(li) for i = 1, 2, 3, ..., 46. For a
linear least-squares fit of log(li) for i = 1, 2, 3, ..., 46, p1 = 0.4093 with a 95%
confidence interval of (0.4018, 0.4168), p2 = 0.8728 with a 95% confidence in-
terval of (0.6691, 1.076), SSE=4.998, R-square=0.9963, and RMSE=0.337. See
Figure 71 for a plot of log(li/

√
log(li)) and log(m′i) for i = 1, 2, 3, ..., 46. See

Figure 72 for a plot of the p1 values of the quadratic least-squares fits of log(m′i)
and the p1 values of the quadratic least-squares fits of log(l1) for k = 100, 200,
300, ..., 1000 and i = 57, 59, 58, 57, 56, 57, 57, 57, 60, and 61 respectively (cor-
responding to the local maxima for x ≤ 950000000). See Figure 73 for a plot of
the p2 values of the quadratic least-squares fits of log(li) and the p2 values of the
quadratic least-squares fits of log(m′1) for k = 100, 200, 300, ..., 1000. See Fig-
ure 74 for a plot of the p3 values of the quadratic least-squares fits of log(li) and
the p3 values of the quadratic least-squares fits of log(m′1) for k = 100, 200, 300,
..., 1000. The R-square values for the quadratic least-squares fits of the log(m′i)
values are 0.9894, 0.9904, 0.9907, 0.990, 0.9907, 0.9925, 0.9932, 0.9932, 0.9947,
and 0.9938 respectively. The R-square values for the quadratic least-squares fits
of the log(li) values are 0.9912, 0.9915, 0.9919, 0.9908, 0.9913, 0..9922, 0.9925,
0.9925, 0.9949, and 0.9947 respectively.

Let li and mi be similarly defined for the function σ0(x). Let m′i denote j(li).
See Figure 75 for a plot of li/(log(li)m

′
i), m

′
i/li, and 1/ log(li) for i = 1, 2, 3,

..., 65 (corresponding to the local maxima for x ≤ 1000000000). See Figure
76 for a plot of log(m′i) for i = 1, 2, 3, ..., 65. For a quadratic least-squares
fit of log(m′i) for i = 1, 2, 3, ..., 65, p1 = −0.0007068 with a 95% confidence
interval of (−0.001025, −0.0003881), p2 = 0.3254 with a 95% confidence inter-
val of (0.3037, 0.3471), p3 = 0.5652 with a 95% confidence interval of (0.2549,
0.8756), SSE=10.14, R-square=0.9943, and RMSE=0.4045. See Figure 77 for a
plot of log(li) for i = 1, 2, 3, ..., 65. (A quadratic least-squares fit is given in the
above.) See Figure 78 for a plot of log(li/

√
log(li)) and log(m′i) for i = 1, 2, 3,

..., 65. See Figure 79 for a plot of log(li) + log(log(li)), log(li), and log(mi) for
i = 1, 2, 3, ..., 65. See Figure 80 for a plot of (log(li) + log(log(li))) − log(m′i)
for i = 1, 2, 3, ..., 65. (This is evidence in support of Conjecture 1.)

Let li and mi be similarly defined for the function σ0(x) with the additional

stipulation that |yx(8)− zx(8)| = k. Let m′i =
∑li
n=1(yli/n(8)− zli/n(8))2 where

n|li. See Figure 81 for a plot of li/(log(li)m
′
i), m

′
i/li, and 1/ log(li) for k = 3

and i = 1, 2, 3, ..., 13 (corresponding to the local maxima for x ≤ 30000). See
Figure 82 for a plot of log(m′i) for i = 1, 2, 3, ..., 13. For a quadratic least-
squares fit of log(m′i) for i = 1, 2, 3, ..., 13, p1 = 0.00597 with a 95% confidence
interval of (−0.004447, 0.01564), p2 = 0.3586 with a 95% confidence interval
of (0.2141, 0.5031), p3 = 1.81 with a 95% confidence interval of (1.37, 2.25),
SSE=0.4068, R-square=0.9884, and RMSE=0.2017. See Figure 83 for a plot
of log(li) for i = 1, 2, 3, ..., 13. For a quadratic least-squares fit of log(li) for
i = 1, 2, 3, ..., 13, p1 = −0.01942 with a 95% confidence interval of (−0.03464,
−0.004204), p2 = 0.9339 with a 95% confidence interval of (0.7149, 0.1.153),
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p3 = 0.7612 with a 95% confidence interval of (0.09466, 1.428), SSE=0.934, R-
square=0.9885, and RMSE=0.3056. See Figure 84 for a plot of log(li/

√
log(li))

and log(m′i) for i = 1, 2, 3, ..., 13.
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